
Collective decision-making
Thomas Bose1, Andreagiovanni Reina1 and
James AR Marshall1,2

Available online at www.sciencedirect.com

ScienceDirect
Collective decision-making is the subfield of collective

behaviour concerned with how groups reach decisions. Almost

all aspects of behaviour can be considered in a decision-

making context, but here we focus primarily on how groups

should optimally reach consensus, what criteria decision-

makers should optimise, and how individuals and groups

should forage to optimise their nutrition. We argue for deep

parallels between understanding decisions made by individuals

and by groups, such as the decision-guiding principle of value-

sensitivity. We also review relevant theory and empirical

development for the study of collective decision making,

including the use of robots.
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Introduction
We consider collective decision-making to be the subfield

of collective behaviour concerned with how groups reach

decisions without centralised leadership. Examples

include nestsite selection by honeybees [1] and ants

[2], and consensus selection of food sources in shoaling

fish [3]. Individuals in a group can prefer to participate in a

consensus decision, in which all individuals seek to agree

on the same outcome, either because the group is tightly

functionally integrated, as is the case with a social insect

swarm or colony containing a single queen [1,2], or

because group members prefer to remain within an unre-

lated group, for example to avoid predation risk [3].

Within high-relatedness groups under appropriate condi-

tions, selection on the group can lead to group-level

adaptations [4], so group members’ behaviour is shaped
Current Opinion in Behavioral Sciences 2017, 16:30–34 
as part of a group-level decision-making mechanism.

Within unrelated groups, individuals’ behaviour should

maximise their own expected fitness, within the context

of the group [5]. Indeed inferring ‘group cognition’ abili-

ties for unrelated groups may be harder than previously

appreciated; alternative explanations for improved deci-

sion performance in fish shoals are that fish in larger

groups have improved individual-level abilities, and that

larger groups are more likely to contain better decision-

makers who dominate collective decisions [6].

In this review we focus primarily on functionally-inte-

grated decision-making systems for two reasons; first, as

mentioned above, functional group integration makes it

appropriate to apply optimality theory at the level of the

group [7]. Second, parallels can be drawn between the

behavioural rules of a ‘superorganismal’ group, and the

behavioural rules of unitary individuals. We consider such

parallels to be illuminating. Our review can thus be read

as primarily presenting an ‘economic’ view of the behav-

iour of groups making decisions, where decision outcomes

result in gains or losses of quantities that co-vary with

reproductive fitness. We place particular emphasis on the

links between collective decision-making, perceptual

decision making and value-based decision-making, and

on nutritional decision-making. We review applicable

theory, as well as the emerging use of robotics, for

understanding such systems.

Quorums and confidence
Groups can realise superior decision performance to indi-

viduals for a variety of reasons. The simplest argument is

based on the ‘wisdom of the crowds’, recognised since the

early 20th Century; for example a group decision realised

by pooling independent individual assessments will be

more accurate than an individual group member, under

certain reasonable assumptions [8]. Inevitably, further

refinements of group decision-making are possible; here

we mention two recent developments.

Signal detection theory, developed to understand optimal

psychophysical decision-making by individuals, shows

that there is an inherent decision-making trade-off

between true positive rate and false positive rate; a

decision-maker cannot improve the rate at which they

detect events of interest, without also increasing the rate

at which they incorrectly detect those events when they

have not happened. Yet in the group situation, Wolf et al.
show how introducing a quorum decision rule, typical of

social insect colonies, allows the group to simultaneously
www.sciencedirect.com

mailto:james.marshall@sheffield.ac.uk
http://dx.doi.org/10.1016/j.cobeha.2017.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2017.03.004&domain=pdf
http://www.sciencedirect.com/science/journal/23521546


Collective decision-making Bose, Reina and Marshall 31
improve both rates [9]. Understanding how to correctly

set quorums, which may be sub-majority or super-major-

ity according to the accuracy of individuals, also shows

that in fact group decisions are always more accurate than

individual decisions [10��].

Still further improvement is possible on group decision-

making, by accounting for the unavoidable variation in

individual decision accuracy. Decision theory shows how

to optimally weight individuals’ contributions to group

decisions according to their accuracy, or ‘confidence’; this

theory has been applied successfully to human groups and

may be fruitfully applied to other animal groups [11��].

Value-based decisions
In the preceding section group decision performance was

considered in terms of decision accuracy, or probability of

making the correct response. Yet consider the decision

problem faced by a honeybee swarm selecting a new nest

site [12]. Obviously, it is advantageous for the collective

of bees to choose the site of highest possible quality.

Imagine, for example, that there are two potential nest-

sites available, both of equal but low quality. In this case it

is best to wait and postpone the decision until another

option will be discovered. In contrast, if there are two

alternatives having equal but high qualities, then the

honeybees should choose as quickly as possible, as a long

decision making process is accompanied by the consump-

tion of resources and a prolonged absence of shelter, and

does not lead to any further advantage.

Precisely such an adaptive value-sensitive decision mak-

ing mechanism has been analysed in a model of the stop-

signalling behaviour of honeybees [12], whose decision

dynamics change adaptively as a function of quality of

available options [13,14]. In case of equal, high quality

options a lower cross-inhibition strength is sufficient to

break decision deadlock compared to higher cross-inhi-

bition strengths required for lower quality options [13].

This has led to the proposal of a speed-value tradeoff [15]

that underlies value-based decisions, rather than a speed-
accuracy tradeoff as discussed in the preceding section, and

considered in conventional two-alternative choice per-

ceptual decisions [16].

Conceptualising value-based decisions shows, however,

that there are similarities between perceptual and value-

based decision making [17,18], although the usage of the

term ‘value’ may vary with context [19]; value may refer

to stimulus intensity, or to reward magnitude. In fact,

recent studies demonstrate that for primates value-sensi-

tivity represents an important feature of perceptual deci-

sion making, underlining the significance of absolute

values (magnitudes) of input signals [20��]. Teodorescu

et al. showed in experiments with human participants that

increasing the magnitudes of two input signals while

keeping their difference or ratio constant leads to faster
www.sciencedirect.com 
responses; this effect is not predicted by influential deci-

sion models that optimise the speed-accuracy trade-off.

Using data from humans and monkeys, similar observa-

tions are reported by Pirrone et al. [21] for the case of

equal alternatives for both perceptual decisions where

‘value’ represents the magnitude of an input signal, and

value-based decisions where ‘value’ denotes a reward.

These results provide evidence for a speed-value tradeoff

in decision making and, given the suggested similarities

between decision making in the brain and collective

decision making in social insects (e.g. see [7,22]) may

provide new insights into the underlying principles of

collective decision making in social groups. Speed-value

trade-offs should be as fundamental for groups as they are

for individuals.

A speed-value tradeoff should play a key role in decision

making that is not about ‘correct’ or ‘false’ but rather

requires a strategy to choose the best alternative among

available options. Therefore, it would be interesting to

investigate the link between speed-value tradeoffs and a

recently published model describing the optimal decision

making strategy for value-based decisions [23��], which

may reflect the ultimate goal of maximising fitness and

reproductive success in realistic natural decision making

scenarios, including collective decision making of insect

societies.

Nutrition and decision making
Individuals on their own or within social groups fre-

quently make foraging decisions. Those decisions often

aim at balancing the intake of different nutrients rather

than maximising the gain in energy [24], as described by

the Geometric Framework—a graphical approach pio-

neered by Stephen Simpson and David Raubenheimer

[24,25]. In this framework, the performances of animals

or insect colonies are evaluated by considering their

actions in nutrient space. The geometric framework is

important for functionally-integrated social insects colo-

nies as for single animals, as satisfying nutritional needs

is crucial for both. Thus, nutritional deficits may bias or

shape decision making for both in a similar way. The

nutrient space is an N-dimensional space, which is

spanned by N axes each of which represents one nutrient

required in the diet. Imagine, for example, an animal or

social insect colony that needs to consume proteins and

carbohydrates. Then, the nutrient space is two-dimen-

sional. The performance of the animal or social insects

can then be evaluated by plotting the deficits in proteins

and in carbohydrates on the axes of a two-dimensional

Cartesian coordinate plane. As the aim of the (super)

organism is to reach a nutritional target [25], a measure of

distance between current state (a point in the diagram)

and target (another point) quantifies the effectiveness of

their foraging behaviour. When nutrients do not interact

this required distance measure is simply Euclidean

distance [25].
Current Opinion in Behavioral Sciences 2017, 16:30–34
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3 In robotics, situatedness refers to the extent to which a robot is

embedded in the environment that can be sensed and modified through

the robot’s sensors and actuators [41].
Although based mostly on laboratory experiments, con-

sidering two-dimensional problems such as choosing

between proteins and carbohydrates, or food and water,

has led to important insights into how animals and social

groups forage and is empirically well motivated [24,26–

29]. Given a target intake the animal or the insect colony

has to fulfil an ongoing decision task by selecting repeat-

edly among two alternatives, to bring their internal state

as close as possible to their target intake. Hence, behav-

iour that is guided by multiple decisions can be tracked in

nutrient space. Deficits in one or more nutrients drive the

motivations for deciding for or against an action that

reduces a deficit. Houston et al. analyse the optimal

strategy for reducing expected deficit in simple scenarios

where food types contain differing ratios of required

nutrients [30]; the optimal strategy requires decision-

makers to reach a switching line and then move along

this by ingesting food items in the required ratio. This is

hard for animals to do without incurring switching costs,

which change the optimal strategy [29], but could be

more readily achieved by a social insect colony, or

similar, regulating nutrient intake via a population of

foragers.

The geometric framework has been studied in decentra-

lised decision-making systems such as ant colonies [27]

and slime molds [26]. Nutrition in ants is particularly well

studied and emphasises the insect group’s cognitive

ability to integrate the different nutritional needs of

workers and larvae [27], and the flexibility to make

decisions in dynamic environments [31], whilst also

highlighting the vulnerability to extreme nutritional

imbalances [32]. Considering the foraging decisions of

ant colonies illustrates the social dimension of nutrition

[33] and has been related to social immunity [34]. This

link between nutrition and immunocompetence has also

been observed in honeybees [35].

Being central to all social groups, nutritional interactions

may have contributed to the evolution of social behaviour

[36]. In this light, recent observations in wasps [37��]
showing reductions in mushroom body investments from

solitary to social species indicate the intriguing connec-

tion between ‘distributed cognition’ [37��], sociality and

nutritional decision making by social insect colonies in

evolutionary contexts. It could be interesting to see what

effects imbalanced nutrition has on non-foraging deci-

sions of social insects, such as in the house hunting of

honeybees. Here, the geometric framework could be used

to characterise the nutritional state of the colony, provid-

ing the link between nutrient regulation at multiple

organisation levels, social immunity, cognitive abilities

in general and collective decision making in particular.

Robots and collective behaviour
For several decades, solutions from nature have been

taken as a source of inspiration for the design of robotic
Current Opinion in Behavioral Sciences 2017, 16:30–34 
systems. This is particularly true for the field of swarm
robotics, where a large number of autonomous robots

coordinate with each other to perform a common task.

In these decentralised systems, each individual gathers

and exchanges information with the environment and

peers in a local range; the large number of individuals

and nonlinear interactions lead to a coordinated collective

response of the swarm. Given the difficulties in identify-

ing the rules that each agent should follow in order to

obtain the desired collective behaviour, a widespread

approach has been to look at natural processes that display

the desired behaviour and adapt such processes to imple-

ment multirobot systems.

While most works have an engineering scope a few

robotics studies, instead, aim at replicating the actual

animal behaviour to investigate the veracity of different

assumptions, or validate the correctness of biological

models (e.g. [38,39]). Usually, to understand collective

processes biologists use analytical and computational

models such as multiagent simulations, in order to iden-

tify individual rules that lead to the observed group

response. Through models, the individual behaviour

can be varied systematically to identify which are the

relevant components or model parameters. In collective

behaviour, the process dynamics are principally deter-

mined by how information is acquired, processed and

transferred between individuals. In some cases, all rele-

vant components and realistic assumptions can be

included in the mathematical model. However, when

space, situatedness3 and the physical environment are

determining factors in the process, implementing collec-

tive behaviour models on robots presents advantages

which should not be overlooked [38,40,41]. Working with

a physical device imposes constraints that force the

designer to consider the limited capabilities of each

individual (in terms of sensors and actuators), the effect

of noise, and the mechanistic process of information

transfer. As a result, a robot implementation reduces

the possibility of oversimplifying the model and can

provide insights into biological mechanisms. In particular,

the embodiment and situatedness of a physical device

influence group motion and alter the environmental per-

ceptions of groupmates. As a consequence the dynamics

of the communication topology are affected, and this can

have a bearing on the collective dynamics (e.g. [42]).

Finally, a research area that is receiving growing attention

is experimentation in mixed societies, composed of animals

and robots that interact with each other [41,43,44,45�].
The first challenge of this research field concerns the

design of robots that are considered as groupmates by the

animals. These studies allow identification of the relevant
www.sciencedirect.com
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perceptual components used by the animals (e.g. robot-

fish [46–48], robot-bee [49], robot-rat [50]). Once a robot

is accepted as a groupmate, controlling the robot’s behav-

iour allows investigation of social interactions and how

animals respond to specific behaviours. These studies

help to identify individuals’ cognitive abilities [45�,51–
53] as well as how (and what) information is transferred

within groups [54,55].

Conclusions
As motivated in the Introduction, our review has focused

primarily on an economic view on collective decision-

making. The economic view is a staple of behavioural

ecology, and motivates the tools of optimal decision

theory for the study of animal behaviour. Here we argue

that for decisions in functionally-integrated groups, such

as social insect colonies, optimality theory should also be

applied to collective behaviour. The economic, optimal-

ity theory, view is also applied extensively to understand-

ing animal behaviour in the various fields of neuroscience

and psychology. There, the additional focus on mecha-

nisms underlying behaviour opens up a new dimension of

study. In studying individual animal behaviour, beha-

vioural ecology has traditionally ignored mechanism,

however there is a movement to integrate the study of

mechanism with function [56]. Collective behaviour is, of

course, particularly amenable to observation of mecha-

nisms. Furthermore, through adopting modern robotics

technology, behavioural mechanisms can be elucidated

through manipulation; this might be of particular interest

in functionally-integrated decision-making groups such as

social insect colonies. We argue that when drawing par-

allels between mechanisms for collective behaviour and

mechanisms for individual behaviour is justified, doing so

provides a particularly powerful research programme.
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