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Abstract

Decision-making is a complex task and its underlying mechanisms that regulate be-

haviour, such as the implementation of the coupling between physiological states and

neural networks, are hard to decipher. To gain more insight into neural computations

underlying ongoing binary decision-making tasks, here we consider a neural circuit that

guides the feeding behaviour of a hypothetical animal making dietary choices. We adopt

an inhibition motif from neural network theory and propose a dynamical system charac-

terized by nonlinear feedback, which links mechanism (the implementation of the neu-



ral circuit and its coupling to the animal’s nutritional state) and function (improving be-

havioural performance). A central inhibitory unit influences evidence-integrating exci-

tatory units, which in our terms correspond to motivations competing for selection. We

determine the parameter regime where the animal exhibits improved decision-making

behaviour, and explain different behavioural outcomes by making the link between ac-

cessible states of the nonlinear neural circuit model and decision-making performance.

We find that for given deficits in nutritional items the variation of inhibition strength and

ratio of excitation and inhibition strengths in the decision circuit allows the animal to

enter an oscillatory phase which describes its internal motivational state. Our findings

indicate that this oscillatory phase may improve the overall performance of the animal

in an ongoing foraging task, and underpin the importance of an integrated functional

and mechanistic study of animal activity selection.

1 Introduction

Understanding systems that exhibit complex decision-making behaviour requires the

integration of mechanism and function in a combined modelling framework (Gold and

Shadlen, 2007; McNamara and Houston, 2009; Houston and McNamara, 1999). Ani-

mals making food choices may be fruitfully modelled using this approach (Simpson and

Raubenheimer, 2012; Fawcett et al., 2014). In natural scenarios animals are embedded

in uncertain environments (Fawcett et al., 2014) and, for example, may be subject to pre-

dation risk (Lima and Dill, 1990). Such external influences affect the decision-making

of animals in combination with the momentary nutritional requirements that need to
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be integrated in a multi-faceted physiologically- and neurobiologically-wired network

(Morton et al., 2006; Vong et al., 2011; Atasoy et al., 2012; Wu et al., 2012; Williams

and Elmquist, 2012; Rangel, 2013; Essner et al., 2017). The motivation to eat, for ex-

ample, is related to peripheral signals provided by hormones (Vong et al., 2011; Morton

et al., 2006; Williams and Elmquist, 2012) and populations of neurons that are dis-

tributed over different brain areas (Morton et al., 2006; Tong et al., 2008; Aponte et al.,

2011; Essner et al., 2017). Furthermore, the modulation at corresponding neurobiologi-

cal synapses involves both excitatory glutamatergic neurotransmitters (Liu et al., 2012;

Wu et al., 2012) and inhibitory GABAergic neurotransmitters (Tong et al., 2008; Wu

et al., 2009; Vong et al., 2011). However, given the complexity of interactions between

homeostatic regulators and the decision-making circuitry in the modulation of dietary

choices, unveiling a detailed picture of the underlying computational mechanisms is

still at its beginning (Rangel, 2013).

In the present paper, we address the question of how nutritional deficits may in-

duce feeding behaviour, by coupling nutritional state and animal behaviour through a

decision-making circuit that implements the underlying neural computation. This cir-

cuit, which contains excitatory and inhibitory connections, guides a hypothetical animal

making food choices in an ongoing binary decision-making task. Although we follow

a coarse-grained approach that neglects biological detail, the decision-making circuit

studied here may be considered as an abstraction of the overall neural hardware. To

model the decision-making circuit we draw inspiration from mechanistic models which

have been used to explain neural activity and behaviour in perceptual (Wang, 2002;

Bogacz et al., 2006; Wong and Wang, 2006; Wong et al., 2007; Niyogi and Wong-
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Lin, 2013) and value-based decision-making tasks (Hunt et al., 2012). Adapting neural

mechanisms from one decision paradigm to a different one is consistent with propos-

als for common decision-making mechanisms utilised in different scenarios (Krajbich

et al., 2015).

To examine the utility of our proposed mechanism we embed it in the geometric

framework – a well-studied nutritional theory able to capture real feeding behaviour of

diverse species (Simpson and Raubenheimer, 2012). However, our results may be also

applied to other possible scenarios involving conflicting needs, given the simple and

minimal assumptions made. In the geometric framework animals perform actions (con-

sume resources with different nutritional contents) to reach a preferred nutrient target,

and derive utility according to how close to the target state they get. By reaching their

target intake of nutrients, animals may maximise their reproductive success (Mayntz

et al., 2005; Altaye et al., 2010; Dussutour et al., 2010; Houston et al., 2011; Jensen

et al., 2012; Rho and Lee, 2016). An animal’s inner drive (or motivation) to make

food choices is influenced by the level of nutrients inside the body (Hinde, 1956; Sibly,

1975; Ludlow, 1976; Houston and Sumida, 1985; McFarland, 1999; Marshall et al.,

2015; Bose et al., 2017). Thus, the internal nutritional state acts as excitatory input for

the underlying circuit involved in the decision-making process. However, in neurobio-

logical networks that regulate feeding behaviour, both excitatory and inhibitory inputs

are operative (Morton et al., 2006; Vong et al., 2011; Atasoy et al., 2012; Aponte et al.,

2011; Wu et al., 2012; Williams and Elmquist, 2012; Liu et al., 2012; Rangel, 2013;

Essner et al., 2017), and it has been shown in previous behavioural studies of foraging

animals that inhibitory mechanisms between drives that stimulate different activities
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facilitate improved feeding behaviour (Ludlow, 1976; Marshall et al., 2015).

In our model-based study, we find that excitatory and inhibitory connections in the

decision-making circuit regulate the food intake of an animal for given deficit levels. In

particular, we show that the modulation of excitation and inhibition strengths can drive

the animal through different internal motivational states, which may increase or de-

crease decision-making performance. Our results demonstrate that oscillatory regimes

of the decision-making circuit may lead to improved feeding behaviour. We come to

the conclusion that low-performance decision-making of an animal may emerge from

suboptimal ratios of excitation and inhibition in the decision-making circuit.

2 Model and methods

2.1 Nutritional deficits and the geometric framework

We consider a model animal with deficits in two different nutrients each of which is

exclusively contained in either of two different food types, in the following called food

type 1 and food type 2. That is, by consuming food type 1 the animal cannot reduce the

nutrient only contained in food type 2, and vice versa. Hence, the animal must take in

both food types to satisfy its nutritional needs. We further assume that the nutritional

state of the animal is described in the geometric framework (Simpson and Rauben-

heimer, 2012), which is empirically well-motivated (Chambers et al., 1995; Dussutour

and Simpson, 2009; Behmer, 2009; Dussutour et al., 2010; Altaye et al., 2010; Jensen

et al., 2012; Arganda et al., 2014; Rho and Lee, 2016; Simpson and Raubenheimer,

2012). In the geometric framework, animals (or social insect colonies) are considered
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in nutrient space, which, in general, is a n-dimensional space where each dimension

corresponds to one of n mutually exclusive nutritional components, such as carbohy-

drates or proteins. The momentary nutritional deficits of an animal define its position

in nutrient space relative to a desired target nutrient state. By consuming food items

animals move along ‘rails’ in nutrient space, according to the nutritional composition

of those items. This means that, in general, food items may contain several nutrients

and the nutrient ratios determine the slopes of the rails in nutrient space. However, in

the present study we focus on the special case of one food-one nutrient to simplify the

analysis, although the framework could be extended to allow for food types containing

mixtures of nutrients (e.g. see Houston et al., 2011).

Using the geometric framework we can also describe an animal moving in deficit

space instead of nutrient space, which we do in the present paper. In Fig. 1A we show

an illustration of the geometric framework in deficit space, where we assume that an

animal has to decide about the sequence in which to consume food type 1 and food type

2 in order to reduce its corresponding nutritional deficits. Hence, we may consider the

distance between final deficit state and desired target state as a measure characterising

the animal’s performance at the end of the foraging task. In deficit space the target

nutrient state is located at the origin of the diagram, as the animal aims at reducing all

nutritional deficits to zero. The computation of the animal’s performance in our model

is explained in more detail in Sec. 2.4.
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Figure 1: Overview of modelling assumptions. A: Illustration of the geometric frame-

work in deficit space. The target state (T) is the origin of the diagram (d1 = 0, d2 = 0).

Starting from state A, in a sequence of feeding bouts, the animal tries to reach state T

but may end up in state B. Nutritional states are characterised by the Euclidean distance

between points in the diagram (e.g. A or B) and the target state T. B: Schematic of the

interneuronal inhibition motif. Inhibition is provided by neuronal unit y, which acts

on evidence-integrating units x1 and x2. C: Food types 1 and 2 can be found in differ-

ent locations. Travel times between arbitrary locations of the animal and the two food

sources are modelled using the time-dependent ratio ρ(t) ∈ [0, 1] and the switching

cost τ (which equals the travel time needed to move from one food source to the other).

The animal’s initial position is given by ρ(t = 0) = 1/2. D: Plot of geometric dis-

tribution (Eq. (5)) with interruption probability λ = 0.05, including the corresponding

cumulative distribution function (inset).
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2.2 Architecture of the decision-making circuit and its coupling with

nutritional state

To specify the behaviour of the animal making foraging decisions we implemented a

decision-making circuit, which is based on an interneuronal inhibition motif, as schemat-

ically illustrated in Fig. 1B. This model architecture has similarities with the inhibition

motif applied in a biologically plausible cortical network model used to describe mo-

tion discrimination experiments (Wang, 2002). In a mean-field approach this network

model containing synaptic detail could be reduced to a two-variable model with effec-

tive cross-inhibition, while implicitly embedding an inhibitory interneuronal population

(Wong and Wang, 2006). Fig. 1B is more closely related to the reduced model derived

by Wong and Wang (2006), which has been studied by Niyogi and Wong-Lin (2013) to

investigate the co-modulation of both excitatory and inhibitory neurons in a perceptual

decision-making task, for example. The reduced model (Wong and Wang, 2006) has

also been applied to economic choices (Hunt et al., 2012). We note that in our model

interneuronal units are the sole source of inhibition, whereas previous models contained

cross-inhibitory connections between evidence integrating units in addition to interneu-

ronal inhibition (Wong and Wang, 2006; Niyogi and Wong-Lin, 2013). We also note

that the architecture in Fig. 1B has previously been studied as a linear model in the con-

text of perceptual decision making (Bogacz et al., 2006), and it has been shown that cou-

pled nonlinear rate equations where inhibition is provided by interneuronal units may

be reduced to a nonlinear diffusion equation (Roxin and Ledberg, 2008). In the present

paper we use a nonlinear mathematical model to implement the interneuronal inhibi-

tion motif (see Eq. (3) below). Although mainly studied in perceptual decision-making
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tasks, we believe that the model architecture in Fig. 1B is rather generic, whereas its

mathematical implementation may differ with the decision type.

Applied to our foraging animal model, evidence in favour of food type 1 (food type

2) is integrated by neuronal units x1 (x2). We interpret the activity level of x1 (x2) as

motivation to feed at food source 1 (food source 2). The momentary nutritional state

of the decision-maker generates a representation as neural activation. This is the func-

tion of the pre-processing units in Fig. 1B, which transform the physiological state into

inputs I1 and I2 that feed their respective integrators x1 and x2. Here, the relation-

ship between physiological levels characterising the nutritional state (deficits) and their

representations in the neural circuit is given as

Ij(dj) = q dj , (j = 1, 2), (1)

where q denotes the sensitivity of the animal to deficits dj (j = 1, 2) in nutritional items.

We assume that inputs Ij (j = 1, 2) are polluted by processing noise with stan-

dard deviation σ, which may arise from currents originated in other circuits in the

brain. Noise is included via Wiener processes W1 and W2. Recurrent excitation is

taken into account in the self-excitatory terms with strength α. If activity levels of

x1 and x2 are sufficiently large then the interneuronal inhibitory unit y becomes acti-

vated with strength w and in turn inhibits the evidence-integrating units with strength β.

The functions fe,i(·) appearing in different places in Fig. 1B are normalised nonlinear

input-output functions with a typical sigmoidal shape. Here, fe is involved in excita-

tory processes, whereas fi represents inhibition. The form of the sigmoidal functions is
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given as

fe,i(ξ) =
1

1 + exp[−ge,i (ξ − be,i)]
, (2)

where ge and gi are the gains, and be and bi give the inflection points where fe and

fi reach half-level, respectively. In addition, we assume that information may be lost

by including leak-terms in the evidence-integrating units x1 and x2 (rate k), and in the

interneuronal inhibitory unit y (rate kinh). This model is thus described by the following

system of nonlinear stochastic differential equations

dx1 = [−k x1 + α fe(x1)− β fi(y) + I1(d1)] dt+ σ dW1 ,

dx2 = [−k x2 + α fe(x2)− β fi(y) + I2(d2)] dt+ σ dW2 ,

dy = [−kinh y + w (fe(x1) + fe(x2))] dt .

(3)

In addition to the nonlinear functions in Eq. (3) we introduce an artificial nonlinearity

to prevent x1, x2 and y from taking negative values, i.e. when numerically integrat-

ing system (3) from time tn to obtain the state variables at the next timestep tn+1, we

reset Xtn+1 = max(0, Xtn+1), X = x1, x2, y; otherwise the leak terms (rates k and

kinh) would become positive when the activity levels of the state variables drop below

zero (which may happen occasionally without the max-function filtering out negative

values).

2.3 Switching cost, decision criterion and reduction of nutrient deficits

We assume that the two food sources are physically separated. Thus, there is a cost for

the animal to switch between both food sources, as it has to move between the locations

offering food type 1 or food type 2. Whilst the animal is moving it cannot consume
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nutrients. When there is no switching cost the optimal strategy is to eat exclusively one

food type until a symmetric deficit state is reached then maintain a balanced nutrient

intake (Houston et al., 2011). However, with switching costs suboptimal ‘dithering’ (i.e.

frequent switches with little food intake) will result from this strategy (Marshall et al.,

2015). In our model (as in the study by Marshall et al. (2015)) the cost for switching

is represented by a time constant, denoted τ , which quantifies the travel time it takes

the animal to move from one food source to the other (Fig. 1C). Note that the spatial

position of the animal moving between both food locations is not modeled explicitly.

To study the behaviour of the animal in our model it is sufficient to know at what point

in time the animal is located at food source 1 or food source 2, and when it is moving

between both food source locations. For this purpose, we introduce the ratio ρ(t) to

express the temporal distance between the animal’s current position and the locations

of the two food sources, i.e. ρ(t) τ gives the travel time between current position and

food source 1, and (1− ρ(t)) τ represents the travel time between current position and

food source 2 (Fig. 1C). Thus, ρ(t) is a time-dependent ratio that ranges in the interval

[0, 1]; if ρ(t) = 0 (ρ(t) = 1) the animal is located at food source 1 (food source 2), and

otherwise moves between both food source locations (0 < ρ(t) < 1).

The decision criterion in our model is based on the assumption that the animal per-

forms the activity for which it has the greatest motivation. This assumption has also

been applied in previous studies of ongoing foraging tasks (e.g. Marshall et al., 2015).

We thus consider the time-dependent motivation difference ∆x(t) = x1(t)− x2(t) and

assume that the animal feeds at food source 1 (ρ(t) = 0) or moves towards it (0 <

ρ(t) < 1, ρ(t) decreases) if ∆x(t) > 0, or it feeds at food source 2 (ρ(t) = 1) or moves
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towards the location of food source 2 (0 < ρ(t) < 1, ρ(t) increases) if ∆x(t) < 0.

Throughout the entire decision-making task motivations x1(t) and x2(t) (and hence also

∆x(t)) as well as the inhibitory activity y(t) are constantly updated at each timestep.

In addition, in the numerical simulation we monitor sign [∆x(t) ∆x(t + dt)] at each

timestep dt to detect motivation changes; if sign [·] = +1 then the motivation difference

did not change sign, whereas if sign [·] = −1 then the motivation difference changed

sign within t and t + dt. As a sign change corresponds to a reversal of the travel di-

rection, this allowed us to update momentary travel times and travel directions when

the motivation difference changed from ∆x(t) ≶ 0 at time t to ∆x(t + dt) ≷ 0 at

time t + dt. During the time interval when the sign of the motivation difference re-

mained unchanged travel times corresponding to the travel towards the current target

food source decreased by one dt at each timestep. For example, if we assume that the

model animal moves towards food source 1, i.e. ∆x(t) > 0 and ∆x(t + dt) > 0, then

ρ(t+ dt) τ = ρ(t) τ − dt. Because we know the initial travel time (i.e. ρ(t = 0) τ ), and

keep track of the momentary motivation difference ∆x(t) and travel direction, at each

point in time we can detect if the animal has reached either of the two food sources.

We emphasise that this is a generic approach, where we do not need to make spe-

cific assumptions on the position-time law capturing the momentary location of the

animal performing the decision-making task. Hence, it would be possible to implement

position-time laws with arbitrary functional dependence between location and time in

our model but in the present study we focus on the effect of excitation and inhibition in

the decision-making circuit and model the motion of the animal implicitly.

Initially, the animal is placed exactly midway between the two food sources (ρ(t =
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0) = 1/2), i.e. the animal needs the same amount of time to travel to food source 1

or food source 2 (Fig. 1C). Initial food deficits, d1(t = 0) and d2(t = 0), are set to

either equal or unequal values. To determine the initial motivational state of the animal

we use Eq. (3) without noise (i.e. we set σ = 0) and integrate the dynamical system

until it reaches a stable fixed point or closed orbit. This means, we consider initial

motivations where fluctuations have been averaged out, which allows the system to be

prepared in a well-defined state at t = 0 (the Wiener processes in Eq. (3) represent

white noise with zero mean). When numerically integrating the deterministic equations

(σ = 0) we make use of a fourth-order Runge-Kutta method and when simulating the

stochastic differential equations (σ = 0.01) we apply a predictor-corrector method,

where the deterministic part is calculated with second order of accuracy in timestep

dt (Kloeden et al., 2002). For both methods we used a timestep of dt = 0.005 in

the numerical integration. We found that this choice of dt gives a good compromise

between computation time and accuracy when integrating the system, in particular with

regard to the stochastic equations.

During feeding at one of the two food sources, the time-dependent deficits are re-

duced according to

dj(t) = dj(0)− γ t , j = 1, 2 , (4)

where dj(0) are the initial deficits at t = 0, and γ is the deficit decay parameter (Houston

and Sumida, 1985; Marshall et al., 2015). During the time the animal does not feed,

i.e. when the animal is moving between the two food sources, the nutritional state is

assumed to remain constant. This is a valid assumption if feeding takes place within

sufficiently short periods of time (Houston and Sumida, 1985; Marshall et al., 2015).

13



2.4 Interruption probability and evaluation of the animal’s perfor-

mance

We take into account that the animal may be interrupted whilst executing the sequence

of feeding bouts. This interruption could be due to the presence of a predator, for

instance. To model the probability of interruption, here we follow the approach pre-

sented in Marshall et al. (2015) by assuming that feeding activities are geometrically

distributed over time, which is consistent with the concept of discounted utility of fu-

ture rewards observed in foraging animals (e.g. see Stephens and Krebs, 1986). The

geometric distribution is given as

P (tk = T ) = (1− λ)(T−1) λ , (5)

where tk and bout time T take integer values, i.e. T = 1, 2, 3, ... . With interruption

probability per unit time λ the distribution P (tk = T ) gives the probability that the

ongoing decision-making task comes to an end at time tk = T . In Fig. 1D the geo-

metric distribution and the corresponding cumulative distribution function (inset) are

displayed. The maximum bout time Tmax is computed such that the cumulative proba-

bility of the foraging task being interrupted is at least 99%. In the following analysis,

we assume an interruption probability of λ = 0.05, yielding a maximum bout time of

Tmax = 91. Hence, using the geometric distribution we can define an upper bound

on the duration of the ongoing decision-making task solely defined by the interruption

probability λ. This seems reasonable from a behavioural ecology point of view, as in

a natural environment the presence of predators or other interruptions are likely to de-

termine the end of feeding bouts rather than uninterrupted food consumption until all
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deficits are satisfied.

In the geometric framework a simple measure of performance in a nutritional decision-

making task is the square of the Euclidean distance between current state and target state

(Simpson and Raubenheimer, 2012). The larger this distance the smaller the reward, or

phrased differently, the larger the penalty incurred by the animal. As we take into

account possible interruptions at different points in time during the ongoing decision-

making task, a quantity that characterises the overall performance of the animal is the

expected penalty given as (Marshall et al., 2015)

E(p) =
Tmax∑
T=1

p(T )P (tk = T ) , p(T ) = d21(T ) + d22(T ) , (6)

where p(T ) denotes the penalty if nutritional intake stops at time T , i.e. the square

of the Euclidean distance between the nutritional state at time T and the target state.

P (tk = T ) is the probability representing the geometric distribution as introduced in

Eq. (5).

3 Results

3.1 Temporal evolution of deficits and motivations

We begin our analysis by showing the feeding behaviour of the animal regulated by the

decision-making circuit. For this purpose, we introduce the excitation-over-inhibition-

ratio (E/I-ratio) as

r =
α

β
, (7)
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as well as the mean deficit, dm, and the deficit difference, ∆d, according to

dm =
1

2
(d1 + d2) , ∆d = d1 − d2 . (8)

Using these definitions, we plot the change of the animal’s motivational state and the

reduction of the animal’s deficits for different E/I-ratios, r = 1 and r = 2, in Fig. 2.

Here we assumed that initial deficits in food type 1 and food type 2 are equal at t = 0,

i.e. dm(t = 0) = 7.5 and ∆d(t = 0) = 0; below we also consider unequal initial

deficits, ∆d(t = 0) > 0, in Section 3.4.

In Fig. 2A, we show the temporal evolution of the motivational difference ∆x(t) =

x1(t) − x2(t) for r = 1. If ∆x(t) > 0 (∆x(t) < 0) the animal moves towards, or

feeds at, food source 1 (food source 2). At t = 0 we have ∆x(t = 0) = 0 due

to the symmetry of the initial conditions but we point out that the absolute values of

x1(t = 0) and x2(t = 0) are nonzero in this example (and in general). However, due

to the presence of noise the motivation difference quickly becomes nonzero for t > 0,

and if ∆x(t) gets sufficiently large it moves towards one of the accessible attracting

states. In the following, accessible stable states expressed by the motivation difference

are denoted ∆xs = xs1 − xs2. We observe two types of attractors in our model – stable

fixed points and stable periodic orbits. If an accessible state is a stable fixed point then

xs1 and xs2 are simply the equilibrium values of the motivations, i.e. xj(t → ∞) → xsj

(j = 1, 2). However, if an accessible state describes a stable periodic orbit then ∆xs

oscillates between max(∆xs) and min(∆xs). Regarding the simulation in Fig. 2A (r =

1), the only accessible attracting states are stable limit cycles; one periodic orbit with

amplitudes ∆xs > 0 and another periodic orbit with amplitudes ∆xs < 0. Hence, the

symmetric initial condition ∆x(t = 0) = 0 is a metastable state arising from equally
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r=1

r=1 r=2

r=2

Figure 2: Simulation of ongoing decision-making process for different E/I-ratios.

Shown are the change of motivation differences (A and B) and corresponding deficits,

i.e. mean deficit dm and deficit difference ∆d, (C and D) over time. Amplitudes of

motivation difference and number of motivation switches depend on the E/I-ratio r.

For r = 1 (A) we observe fewer motivation switches compared with the case r = 2

(B), yielding a larger deficit reduction for r = 1 (C) compared with the r = 2

case (D). The task ends at Tmax = 91, as explained in the text. Parameter values:

d1(t = 0) = 7.5 = d2(t = 0), τ = 4, γ = 0.15, q = 0.1, β = 3, k = 0.8, kinh = 0.8,

w = 3, ge = 10 = gi, be = 0.5 = bi, and σ = 0.01.

strong attraction by both limit cycles. The sustained oscillations are inherent to the

nonlinear decision-making circuit. This is further discussed below and illustrated in
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Fig. 3. If the animal reached food source 1 (food source 2) it could feed and reduce

deficit d1 (d2) according to Eq. (4). Thus, during food intake the mean deficit decreased

and the deficit difference increased or decreased as shown in Fig. 2C. A deficit reduction

in turn means that the input to the decision-making circuit, which corresponds to the

consumed food item, decreases. The animal can only consume one food item at a time

which introduces an asymmetry in the system and causes another type of oscillation

in the animal’s response described by its motivational state – the oscillations around

∆x = 0 which are due to food intake and correspond to the temporal evolution of

∆d(t) (compare Figs. 2A and C).

The behaviour for r = 1 in Figs. 2A and C is contrasted with the behaviour observed

for the E/I-ratio r = 2 illustrated in Figs. 2B and D. As in the case r = 1 (Fig. 2A),

we observe motivation differences oscillating around ∆x = 0 for r = 2 but the am-

plitudes are much smaller (Fig. 2B). The reason for this behaviour is that ∆xs = 0 is

now an accessible stable fixed point and motivation differences ∆x(t) 6= 0 only arise

from fluctuations due to noise in the system and from decreasing deficits as a result of

feeding at a food source. However, as the magnitudes of ∆x(t) are small, we observe

more frequent switches between activities (see also Fig. 4 below). This leads to a less

effective deficit reduction for r = 2 (Fig. 2D) compared with the case r = 1 (Fig. 2C).

Our finding that oscillatory regimes, which arise from nonlinearity in the underlying

decision-making circuit, may facilitate the continuous decision-making process is also

evident in the bifurcation diagrams in Fig. 3. Here, we plotted all accessible station-

ary states of the dynamical system (3) with dm ∈ [2.5, 7.5] as the critical parameter,

18



including bifurcation points1. We chose different values of ∆d that are representative

for the entire decision-making task, i.e. deficits change over time and are frequently

equal or characterised by small differences (the animal feeds at food source 1, then at

food source 2, and so on; cf. Figs. 2C and D). This means that the mean deficit, dm(t),

decreases over time whilst the deficit difference, ∆d(t), alternates between positive and

negative values and zero.

Figs. 3A and C show that stable limit cycles are the only attracting states for r = 1

over a wide range of dm-values, except for small dm below the Hopf-bifurcation point

at dm ≈ 2.74 in case ∆d = 0 (Fig. 3A) and at dm ≈ 3.08 in case ∆d = 0.2 (Fig. 3C).

Below this bifurcation point we observe two stable fixed points with nonzero ∆xs.

Both Hopf-bifurcations are supercritical (the first Lyapunov-exponent is negative). If

we introduce a nonzero deficit difference (Fig. 3C), we see that the Hopf-bifurcation

points are shifted; the Hopf-bifurcation point for which ∆xs > 0 moves to smaller dm-

values (out of the range plotted), and the Hopf-bifurcation point for which ∆xs < 0

moves to larger dm-values. In addition, the amplitudes corresponding to a motivation

difference below zero, i.e. the motivation to eat the food type in which the animal has

the lower deficit is greater, are slightly smaller than those corresponding to a motivation

difference larger zero. However, in our simulations we observed that although both

limit cycles are orbitally stable, oscillating motivation differences move quickly onto

the limit cycle for which ∆xs > 0.

In contrast, if we consider the case r = 2 (Figs. 3B and D), we see that there is a

1Bifurcation points were computed using the numerical continuation tool MatCont (Dhooge et al.,

2003, 2008).
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Figure 3: Plot of stable motivational states, ∆xs = xs1−xs2, depending on mean deficits,

dm ∈ [2.5, 7.5], that correspond to Fig. 2. Different initial deficits, ∆d(t = 0), and

E/I-ratios, r, are considered. For r = 1 (A and C) stable periodic orbits are the only

accessible states over a wide range of relevant dm-values, whereas for r = 2 (B and

D) periodic orbits do not exist in the same range of dm-values. Bifurcation points are

indicated (H: Hopf bifurcation, LP: limit point). Only accessible states are shown –

either stable fixed points (solid lines) or stable limit cycles. Maximum and minimum

amplitudes in a limit cycle are plotted for the periodic solutions (dashed lines). Parame-

ter values: τ = 4, γ = 0.15, q = 0.1, β = 3, k = 0.8, kinh = 0.8, w = 3, ge = 10 = gi,

be = 0.5 = bi, σ = 0.
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stable fixed point characterised by ∆xs = 0. The other two stable fixed points shown in

Fig. 3B cannot be reached due to the symmetric initial deficits d1(t = 0) = d2(t = 0)

(cf. the small amplitudes of ∆x(t) Fig. 2B). Even if the animal feeds at one of the

food sources, which yields asymmetric deficit inputs, we do not observe a noticeable

change in the plot of the accessible states in Fig. 3D (∆d = 0.1) compared with Fig. 3B

(∆d = 0). Therefore, it is the stable equilibrium with ∆xs = 0 that pulls back the

system to a symmetric state, which makes the foraging task less effective.

3.2 Time intervals between motivation changes

The higher efficiency in case r = 1 compared with the case r = 2 is also highlighted in

Fig. 4. Here we plotted the time interval between two consecutive motivation changes,

denoted ∆Tchange, which is defined according to

∆Tchange(n) = tcn − tcn−1 if tcn − tcn−1 > ε , tcn > tcn−1 , (9)

where tcn denotes the point in time of the n-th motivational change observed in the

simulation, i.e. tcn = t if sign[∆x(t − dt) ∆x(t)] = −1 (dt is the timestep in the

numerical integration). In the definition of ∆Tchange in Eq. (9) we only count time

intervals that are larger than the threshold value ε. Otherwise noisy fluctuations would

lead to a large number of motivation changes with ∆Tchange ≈ 0. The shaded area

where ∆Tchange < τ indicates inefficient decision-making. As τ represents the time

it takes to travel from one food source to the other, values of ∆Tchange ≤ τ indicate

dithering between the two available options, that is frequently changing motivations

lead the animal to travel back and forth between both food sources with little or no food

intake. In addition, we can also see that, on average, ∆Tchange increases with increasing
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Figure 4: Plot of time intervals between two consecutive motivation changes depending

on the number of motivation changes that occur during the ongoing decision-making

task. The shaded area (∆Tchange ≤ τ ) is the area where dithering might occur, i.e.

switching motivations in a time interval smaller than is needed to travel from food

source 1 to food source 2. Averaged curves show mean values obtained from simulating

103 independent trials; on average, foraging is more effective for r = 1 (averaged curve

above the shaded area) than it is for r = 2 (averaged curve within the shaded area).

Single trial curves correspond to motivation changes shown in Figs. 2A (r = 1) and

C (r = 2) and fluctuate around the averaged curves. Bars represent 95% confidence

intervals. Model parameters as in Fig. 2, and ε = 0.5.

number of motivation changes for r = 1, whereas it only increases slightly for r =

2 for small numbers of motivation changes and remains almost constant afterwards.
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Notably, the averaged curve for r = 2 remains below τ for all motivation changes,

whereas the averaged curve for r = 1 is always larger than τ (averaging included 103

simulations). However, we also point out that ∆Tchange should not increase too much,

as otherwise efficiency drops again. This happens if ∆Tchange approaches the maximum

bout time Tmax. Therefore, we conjecture that improved decision-making of the animal

is possible only if the decision-making circuit regulates the animal’s behaviour such that

τ < ∆Tchange < Tmax, suggesting that ∆Tchange may also be considered as an indicator

of efficient food intake.

3.3 Performance under the modulation of inhibition strength and

excitation/inhibition-ratio

In this section, we highlight the significance of excitatory and inhibitory connections

in the decision-making circuit. In Fig. 5, we have simulated our model for inhibition

strengths in the range 0 < β ≤ 5 and E/I-ratios varied between 0 < r ≤ 2.5. Fig. 5C

depicts the performance of the hypothetical animal measured by the expected penalty

(cf. Eq. (6)). Additionally, we show the bifurcations and the relevant stable equilibria

and closed orbits that occur when the values of β and r are varied. An area of improved

performance is clearly recognisable (smallest values of expected penalty) in Fig. 5C.

The shape of this area may be related to the corresponding bifurcation diagrams. We

show the bifurcation diagram when β = 3 is kept constant and r is varied (Fig. 5D),

and the bifurcation diagram when r = 1 is kept constant and β is varied (Fig. 5A).

Both bifurcation diagrams correspond to the initial deficit condition at t = 0. As time

progresses, bifurcation diagrams will be updated, so that at every instant in time the
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bifurcation diagrams change. However, as indicated in Fig. 3, relevant accessible states

do not seem to change significantly with decreasing deficits over a wide range of pos-

sible deficit values. Therefore, we assume that the bifurcation diagram at t = 0 may be

considered as a suitable indicator of the expected decision-dynamics.

Inspecting the bifurcation diagram when β is the critical parameter (Fig. 5A), we

can see that for low values of the inhibition strength (β < 0.57) the only stable fixed

point is given by a decision deadlock state (∆xs = 0). Increasing β to larger values,

we observe possible decision deadlock-breaking indicated by the existence of stable

equilibria with ∆xs 6= 0. With the occurrence of decision deadlock-breaking the per-

formance of the animal improves (compare bifurcation diagram in Fig. 5A and perfor-

mance plot in Fig. 5C). The performance improves even more with the emergence of

two stable periodic orbits with amplitudes ∆xs > 0 and ∆xs < 0, respectively (note the

two supercritical Hopf-bifurcations points at β ≈ 1.9). However, at β ≈ 3.4 we observe

another supercritical Hopf-bifurcation with ∆xs = 0. In addition, the stable orbits for

which ∆xs 6= 0 cease to exist at β ≈ 3.54, at which point the performance of the ani-

mal drops significantly (compare bifurcation diagram in Fig. 5A and performance plot

in Fig. 5C). In Fig. 5 we use the label EPC (end point of cycle) to indicate that stable

closed orbits vanish. This can either be due to the existence of a limit point of cycles

where stable and unstable periodic orbits meet or the collision of the limit cycle with a

saddle point (homoclinic bifurcation). We observe both events in our analysis.

Similar qualitative behaviour can be observed in the bifurcation digram with r as

the critical parameter (see Fig. 5D). The performance improves as soon as the decision-

deadlock state is broken (see branch point at r ≈ 0.56), and is even further enhanced
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Figure 5: Depiction of the expected penalty with plots of accessible stationary states

for dm(t = 0) = 7.5 and ∆d(t = 0) = 0. Colourbar in B corresponds to plot of

expected penalty in C. Bifurcation diagrams in A and D correspond to dashed lines

in C. Only stable stationary states are shown: either stable fixed points or stable limit

cycles. Maximum and minimum amplitudes are plotted for periodic solutions (A and

D). The area of best performance seems to coincide with the occurrence of stable limit

cycles where xs1 − xs2 6= 0. Abbreviations: LP: limit point, BP: branch point, H: Hopf

bifurcation point, EPC: end point of cycle (diamonds). Selected bifurcation points are

re-plotted in C. Other model parameters as in Fig. 2.
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with the emergence of stable periodic orbits with ∆xs 6= 0 (see Hopf-bifurcations (su-

percritical) at r ≈ 0.71). However, again we observe a clear drop in performance when

these periodic orbits vanish at r ≈ 1.13. For larger r-values the relevant accessible solu-

tions for the decision-making circuit are a stable fixed point and another stable periodic

orbit (which exists until r ≈ 1.77), both characterised by ∆xs = 0.

Our results in Fig. 5 underpin that the occurrence of stable periodic orbits charac-

terised by motivation differences ∆xs 6= 0 may enhance decision-making performance.

The size of the area of improved performance is more extended along the β-axis and

narrower along the r-axis, which seems to be strongly correlated with the range for

which these periodic solutions exist. In contrast, stable fixed points and periodic os-

cillations for which ∆xs = 0 lead to a drop in performance. If the motivational state

is attracted by these solutions that relate to a decision-deadlock, then frequent changes

in motivation difference with small amplitudes may occur. The temporal evolution of

∆x(t) is thus prevented from gaining large motivation differences because it is driven

back to the symmetric state xs1 = xs2. In contrast, when the motivations move along

the asymmetric orbits with ∆xs 6= 0 (compare also Fig. 2A) the periodic orbit allows

the motivations to achieve sufficiently large differences, so that the animal can feed ef-

fectively. However, within one oscillation period motivation differences always come

close to the switching line ∆x = 0. Due to the reduction of deficits (whilst feeding) and

the presence of noise, this facilitates activity switching in an efficient way. In Fig. A1

in Appendix A we also show that with increasing travel time between food sources

(i.e. increasing switching cost τ ), the expected penalty increases as well. However, the

shape of the performance plots remains similar compared with Fig. 5C.
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3.4 Dependence of expected penalty on initial deficits

To investigate the dependence of the expected penalty on the initial deficit difference at

t = 0 we refer to Fig. 6, where expected penalties are plotted for different E/I-ratios,

r, alongside examples of the temporal evolution of motivations for selected ∆d(t = 0).

To simplify the comparison among different ∆d(t = 0), we chose the initial deficits,

d1(t = 0) and d2(t = 0), such that the value of the initial penalty, p(t = 0) = p0 =

d21(t = 0) + d22(t = 0), remains constant for all ∆d(t = 0) considered in Fig. 6. Hence,

in all cases the animal’s deficit state is characterised by identical initial penalties but

different initial deficits.

In line with our results reported in Sec. 3.3, a variation of the E/I-ratio has a sig-

nificant effect on the performance of the animal. For instance, the r = 1 curve in

Fig. 6C shows a lower penalty value compared with both smaller (r = 0.5) and larger

(r = 1.5 and r = 2) values of the E/I-ratio for sufficiently small differences in the

initial deficits. In contrast, when increasing the initial deficit differences we can see

that first the r = 0.5 and r = 1.5 curves (at ∆d(t = 0) ≈ 1.1) and later the r = 2

curve (at ∆d(t = 0) ≈ 2.1) drop below the r = 1 curve. However, the r = 0.5 and

r = 1.0 curves show only small differences in performance in the whole ∆d-interval,

except for very small ∆d(t = 0) (Fig. 6C). Thus, we find that adjusting the E/I-ratio

according to the initial deficit state may help the animal to improve its food intake. The

drop of the expected penalty we observe on the r = 1.5 and r = 2 curves in Fig. 6C

is a direct consequence of the interplay between switching cost τ and the coexistence

of different stable stationary motivational states, briefly described in the following. For

∆d(t = 0) > 0 there are two different stable fixed points available with ∆xs > 0; one
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Δd(0)=1.25

A B

C

Figure 6: Plot of expected penalties averaged over 1000 trials (C) and motivation dif-

ferences for single trial examples (A and B) depending on the initial deficit difference,

∆d(t = 0). The expected penalty is normalised with respect to the initial penalty at

t = 0: p0 = d21(0) + d22(0). For varying ∆d(t = 0) the initial penalty was kept constant.

Performance improves (expected penalty decays) with increasing ∆d(t = 0). Sudden

jumps of E(p), which also depend on the value of the E/I-ratio r, are observed for suffi-

ciently large ∆d(t = 0); more details can be found in the text. Error bars in C represent

95% confidence intervals (errors are small). Other parameter values: τ = 4, β = 3,

γ = 0.15, q = 0.1, k = 0.8, kinh = 0.8, w = 3, ge = 10 = gi, be = 0.5 = bi, and

σ = 0.01.

28



characterised by a large difference in motivations and another fixed point characterised

by a small motivational difference. In what follows, the value of the initial deficit differ-

ence quantifying the switch from small-∆xs to large-∆xs stable fixed points is denoted

∆dswitch. Consider, for example, the r = 1.5 curves in Figs. 6A and C. If the initial

deficit difference is small (0 ≤ ∆d(t = 0) < ∆dswitch ≈ 1.1, Fig. 6C), then motiva-

tional differences are small, too (see initial motivations for r = 1.5 at t = 0 in Fig. 6A).

However, if initial deficit differences are larger than ∆dswitch, the initial motivational

states make a transition from the small-∆xs fixed point to the large-∆xs equilibrium

(cf. initial motivations for r = 1.5 at t = 0 in Figs. 6A and 6B). If this occurs, then the

motivational differences are so far away from the switching condition for motivation

changes (∆x = 0) that the animal only consumes one food type over the entire course

of the ongoing decision-making task. Even when the animal has reduced all deficits of

that one type to zero, its motivations reach a new steady state which is still too far from

the switching condition, as shown in Fig. 6B (see curve labelled r = 1.5). The explana-

tion for the drop of the r = 2 curve at ∆d(t = 0) ≈ 2.1 in Fig. 6C is equivalent to that

for the behaviour of the r = 1.5 curve. Hence, for sufficiently large differences of the

initial deficits the animal may consume only one nutritional item, and by doing so, may

achieve the lowest penalty value. However, this is only beneficial if the corresponding

time frame is sufficiently small. Otherwise it would be detrimental for the animal to

only focus on balancing one of its deficits, and neglecting the other one. We also note

that for sufficiently small switching costs, the penalty for consuming exclusively one

food type would be higher compared with switching between the two activities (Hous-

ton et al., 2011; Marshall et al., 2015). We confirm this and present more details about
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the reduction of deficits for τ = 0.05 and τ = 4 in Fig. B1 in Appendix B, including

the deficit plots corresponding to Fig. 6B.

4 Discussion

Using an interneuronal inhibition motif implemented in a decision-making circuit on

the behavioural level, we demonstrated that modulating inhibition strength and E/I-ratio

may enhance decision-making performance in an ongoing binary choice task. Applied

to a model animal performing a foraging task we found that the feeding behaviour of

the animal improved if its internal motivations were characterised by periodic oscilla-

tions inherent to the nonlinear decision-making circuit (Figs. 2, 3, 5 and 6). Entering

oscillatory internal states may be achieved by tuning inhibition strength and E/I-ratio in

accordance with given nutrient deficits.

Our result that a modulation of the E/I-ratio, r, may improve behavioural perfor-

mance was further underpinned by the observation that time intervals between two

motivation changes, ∆Tchange, may increase when the number of motivation changes

increases (Fig. 4). For r = 1 we found that, except for the first few (in the beginning

of the task) and the last few motivation changes (towards the end of the task), ∆Tchange

increases monotonically with increasing number of motivation changes, whereas for

r = 2 we did not observe this effect (Fig. 4). The increase of ∆Tchange for r = 1 was

caused by a sufficient decrease of food deficits, which are the inputs to the decision-

making circuit. Deficit reduction in case r = 2 was less effective (cf. Figs. 2C and

D). As a change of motivation corresponds to the decision to stop the current and per-
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form the alternative activity, ∆Tchange may be compared with reaction times in other

choice paradigms, such as the free-response paradigm in perceptual decision-making,

where evidence is integrated until a threshold criterion is met (e.g. Bogacz et al., 2006;

Ratcliff and McKoon, 2008). This comparison is non-trivial but should be sensible if

τ < ∆Tchange < Tmax, as discussed at the end of Sec. 3.2. For example, in a reduced

cortical network model applied to investigate a perceptual decision-making task, reac-

tion times decreased when the stimulus strength increased (Wong and Wang, 2006). Al-

though decision type, choice paradigm and mathematical equations in the present paper

and in the study by Wong and Wang (2006) are different, the finding of slower responses

with decreasing absolute stimulus strengths reported by Wong and Wang (2006) seems

to show similarities with our observation of increasing ∆Tchange with decreasing food

deficits, at least on the behavioural level. We note, however, that the model by Wong

and Wang (2006) represents a biophysically plausible network with synaptic currents,

whereas in the present paper we investigated a coarse-grained macroscopic model that

focuses on the inhibition mechanism and not on synaptic detail. Furthermore, reaction

times in the work by Wong and Wang (2006) could be explained by local dynamics

around a saddle point and did not involve oscillating activity levels of excitatory pop-

ulations. Interestingly, decreasing reaction times with stronger input values have also

been observed in other studies of perceptual decision-making (Pins and Bonnet, 1996;

Polanı́a et al., 2014; Teodorescu et al., 2016; Pirrone et al., 2018), and value-based

decision-making (Hunt et al., 2012; Polanı́a et al., 2014; Pirrone et al., 2018; Reina

et al., 2018).

Our nonlinear implementation of the interneuronal inhibition motif could also have
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potential applications in behavioural resonance (Wiesenfeld and Moss, 1995; Russell

et al., 1999). Inside the brain, noise is present at all stages of the sensorimotor loop

and has immediate behavioural consequences (Faisal et al., 2008). It is known that a

variation of noise strengths may induce transitions between different dynamical regimes

(Juel et al., 1997; Yang et al., 1999; Gao et al., 2002). For example, it has been shown

that the presence of noise in nonlinear dynamical systems may shift Hopf-bifurcation

points (Juel et al., 1997), and can lead to stochastic resonance-like behaviour even in

the absence of external periodic signals, when the system is close to a Hopf-bifurcation

point (Yang et al., 1999). This seems to be particularly relevant for our study, as we

have demonstrated that stable limit cycles born at Hopf-bifurcation points may improve

decision-making and feeding behaviour. However, performing a bifurcation analysis in

the presence of noise is a subtle issue and deserves to be investigated in a separate study,

as noise-induced Hopf-bifurcation-type sequences may also arise in parameter regimes,

where noise-free equations do not exhibit periodic solutions (Gao et al., 2002).

Although our macroscopic decision-making circuit allows the identification of all

accessible motivational states of the behaving model animal, it does not include bio-

logical detail on the cellular or molecular level. In a physiologically more detailed pic-

ture, the motivation to eat involves signals from the periphery transmitted by hormones,

such as leptin, insulin and ghrelin (Vong et al., 2011; Morton et al., 2006; Williams and

Elmquist, 2012), neurotransmission in hypothalamic neurocircuits (Morton et al., 2006;

Tong et al., 2008; Aponte et al., 2011) and the relative balance of activity in distinct

brain areas (Essner et al., 2017). Agouti-related protein (AgRP) neurons and neurons

that express pro-opiomelanocortin (POMC) located in the arcuate nucleus play pivotal
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roles in regulating food intake – AgRP neurons stimulate food intake whereas POMC

neurons reduce the intake of food (Morton et al., 2006; Vong et al., 2011; Atasoy et al.,

2012; Aponte et al., 2011; Wu et al., 2012; Williams and Elmquist, 2012; Liu et al.,

2012; Rangel, 2013; Essner et al., 2017). Excitatory and inhibitory neurotransmitters

are modulators of signals at corresponding neurobiological synapses. More precisely,

there is evidence that excitatory glutamatergic input and its modulation by NMDA re-

ceptors play key roles in controlling AgRP neurons (Liu et al., 2012). Glutamatergic

neurons in other brain regions have also been identified to affect food intake (Wu et al.,

2012). Furthermore, it has been observed that leptin-responsive GABAergic presynap-

tic neurons mediate the response of postsynaptic POMC neurons (Vong et al., 2011) and

it has been shown that GABAergic signalling by AgRP neurons is required to regulate

feeding behaviour (Tong et al., 2008; Wu et al., 2009).

Although providing a simplified picture of reality, our modelling approach may give

further insights on the behavioural level, as it combines a neurally-inspired circuit archi-

tecture combining mechanism and function; function in this context means that an opti-

mal diet, i.e. achieving the target nutrient intake, is related to maximising reproductive

value (Mayntz et al., 2005; Altaye et al., 2010; Dussutour et al., 2010; Houston et al.,

2011; Jensen et al., 2012; Rho and Lee, 2016). As the decision-making circuit which

underlies the neural computation regulates choice behaviour based on nutritional needs,

its excitatory and inhibitory couplings are of paramount importance to advance our un-

derstanding of dietary choices. On the molecular and neuroanatomical level, progress

has been made to reveal underlying neural circuits for hunger (Atasoy et al., 2012) and

for mediating appetite (Wu et al., 2012), for example, which could build the basis for a
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biologically more refined network-based computational model of dietary choice. How-

ever, whether or not a biologically-based network model can attain sufficiently slow

switching dynamics on the behavioural level, as observed in the macroscopic decision-

making circuit in the present paper, and adapt to realistically large physical distances

(i.e. large switching costs), requires further investigation. Potentially, this could also

be of interest for applications in artificial decision-making systems, such as robots im-

plementing brain-inspired mechanisms to perform activity selection tasks (Girard et al.,

2003).
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Supplementary material

Computer code for data generation is open source and available under:

https://github.com/DiODeProject/Inhibition-and-excitation-shape-activity-selection.

Appendix

A Dependence of expected penalty on switching cost τ

To show the effect of switching cost τ on the expected penalty defined in Eq. (6), we

assumed initial deficits d1(t = 0) = 7.5 = d2(t = 0) and compared the expected

penalties for five different values of τ , i.e. τ = 2, 4, 8, 16 and 32. The corresponding

results are depicted in Fig. A1.

We can recognise that, although the shape of the penalty landscape in Figs. A1A-

A1E remains very similar under variation of τ , the whole process becomes less effec-

tive. A numerical comparison of the minimum values of the normalised expected penal-

ties min(E(p)/p0) after terminal time Tmax, is shown in Fig. A1F. The initial penalty

at t = 0 is given as p0 = d21(t = 0) + d22(t = 0). The shape of the curve in this diagram

confirms that performance decreases with increasing τ . Fig. A1F also illustrates that an

increase of τ leads to a nonlinear relationship between expected penalty and switching

cost.
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A B C

D E F

Figure A1: Dependence of expected penalty on switching cost τ . We chose a symmetric

starting point at τ/2 in all plots. Areas characterised by the lowest penalty values mirror

the best performance of the model animal. Parameter values: dm(t = 0) = 7.5, ∆d(t =

0) = 0, γ = 0.15, q = 0.1, k = 0.8, kinh = 0.8, w = 3, ge = 10 = gi, be = 0.5 = bi,

and σ = 0.01.

B Comparison of deficit reduction for different switching costs

In Fig. B1 we show a comparison of the deficit reduction in the ongoing decision mak-

ing task of the model animal in dependence on the travel time between both food sources

(i.e. the switching cost) τ . In agreement with other work (Houston et al., 2011; Marshall

et al., 2015) the animal performs better when the switching cost is lower; compare the

plots in Figs. B1A-D with their counterparts in Figs. B1E-H. The animal also performs

better when it frequently alternates between between both food types, if τ is sufficiently

low. However, if the opposite applies and the switching cost is significantly higher,
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Figure B1: Effect of switching cost τ and E/I-ration r on deficit reduction. We chose

a symmetric starting point at τ/2. The expected penalties, E(p), and switching costs

(travel time between food sources), τ , are given in each plot. Lower penalty values

mean better performance of the model animal. Parameter values: dm(t = 0) = 7.47,

∆d(t = 0) = 1.25, τ = 4, β = 3, γ = 0.15, q = 0.1, k = 0.8, kinh = 0.8, w = 3,

ge = 10 = gi, be = 0.5 = bi, and σ = 0.01.

then animals performing exclusively one activity could improve their performance at

the end of the ongoing foraging task. This behaviour can be achieved by modulating

the E/I-ratio accordingly. Figs. B1E-H illustrate this result. An animal performing only

one activity may achieve the best performance for τ = 4 (see Fig. B1G). As discussed

in the main text, this observation is a direct consequence of the nonlinearity of the

underlying Eq. (3), and is, of course, only reasonable in the short-term, to which our

study refers. In contrast, over longer periods of time the animal needs to perform both

activities to survive.
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