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Multi-Swarm Interaction through Augmented
Reality for Kilobots

Luigi Feola1,2, Andreagiovanni Reina3, Mohamed S. Talamali4, and Vito Trianni2

Abstract—Research with swarm robotics systems can be com-
plicated, time-consuming, and often expensive in terms of space
and resources. The situation is even worse for studies involv-
ing multiple, possibly heterogeneous robot swarms. Augmented
reality can provide an interesting solution to these problems,
as demonstrated by the ARK system (Augmented Reality for
Kilobots), which enhanced the experimentation possibilities with
Kilobots, also relieving researchers from demanding tracking and
logging activities. However, ARK is limited in mostly enabling
experimentation with a single swarm. In this paper, we introduce
M-ARK, a system to support studies on multi-swarm interac-
tion. M-ARK is based on the synchronisation over a network
connection of multiple ARK systems, whether real or simulated,
serving a twofold purpose: (i) to study the interaction of multiple,
possibly heterogeneous swarms, and (ii) to enable a gradual
transition from simulation to reality. Moreover, M-ARK enables
the interaction between swarms dislocated across multiple labs
worldwide, encouraging scientific collaboration and advancement
in multi-swarm interaction studies.

Index Terms—Swarm Robotics, Multi Swarm, Heterogeneity,
Kilobot, Augmented Reality

I. INTRODUCTION

Robot swarms are expected to revolutionise a large number
of application sectors and spread into our everyday lives

[1]. A swarm refers to a decentralised group of self-organising
robots that operate in a coordinated manner without the need
for a central authority or leader. The robots within a swarm
can interact with each other through various means, such as
by exchanging information or by physically interacting with
each other through contact or proximity [2]. A homogeneous
swarm consists of robots that are all identical in terms of
their physical and software characteristics. This means that
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they all have the same capabilities and limitations, and can
perform the same tasks. On the other hand, a heterogeneous
swarm is made up of robots that have different physical and/or
software characteristics, and can be designed to take advantage
of diversity by assigning different roles to different robots
based on their capabilities. This can make the swarm more
efficient and robust in performing complex tasks [3].

A multi-swarm can be considered as a special case of
a heterogeneous swarm. We define multi-swarm interaction
(MSI) as the ability of multiple swarms of self-organising
robots to interact with each other and execute increasingly
complex tasks. Each swarm in a multi-swarm system may be
internally homogeneous or heterogeneous, and may occupy
the same or a different area in the environment. Think for
instance of a swarm of flying robots interacting with a swarm
of ground robots [4]. In a search and rescue scenario, the flying
swarm can be deployed to quickly identify victims, while the
ground swarm can bring first aid support [5]. In a multi-swarm
system, coordination can emerge from the interactions between
the individual robots within each swarm and the interactions
between the different swarms. MSI can help achieve better
overall performance, providing swarms with specialised abil-
ities that can compensate for the limitations of other swarms,
e.g., when a swarm of autonomous surface vehicles provides
a swarm of underwater robots with connectivity across the
water-air barrier and absolute positioning information [6].
Generally speaking, the study of the interaction among multi-
ple robotic swarms is essential for advancing the capabilities
and performance of robotic systems in various applications,
from manufacturing and logistics to search and rescue and
space exploration [7].

Notwithstanding the potential advantage, heterogeneous and
multi-swarms are far less studied than homogeneous ones.
Besides the increased complexity in designing and studying
such systems, other reasons for the limited appeal are very
practical ones, mostly related to increasing costs of production,
experimentation and maintenance. Indeed, research with (het-
erogeneous) robot swarms can be overly complicated, time-
consuming, and expensive in terms of space requirements,
energy and labour. In particular, each research laboratory is
often equipped with robot swarms that are not conceived to
interact with each other, limiting the possibilities of studying
heterogeneous systems.

Several tools have been developed over the years to simplify
research and experimentation in swarm robotics [8], [9]. A
particularly interesting approach makes use of Augmented
Reality (AR) to provide controllable virtual environments
for real robot swarms [10], [11], [12], [13]. In robotics,
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AR consists in providing robots with virtual actuators and
sensors, so that they can (i) modify the virtual environment,
and (ii) perceive (virtual) features in the environment beyond
what their onboard sensors can do. To this end, a simulated
environment is aligned with the real one, a tracking system
reproduces the real robots in the virtual environment, and
communication between the simulator and the robots enables
the virtualisation of sensors and actuators. A very prominent
example is the ARK system [10], developed to increase the
experimental potential of Kilobots, a widely adopted platform
in swarm robotics research [14]. Kilobots are small, inex-
pensive robots designed to efficiently operate within a large
swarm in parallel, including powering on, charging and pro-
gramming. They feature a minimalist design, being endowed
with just one ambient light sensor, two vibration motors, an
infrared transceiver for communication with neighbours, and
a coloured LED. Set aside the morphogenesis behaviour they
were designed for [15], [16], the limited capabilities of the
Kilobots have constrained their experimental usage to basic
behaviours, involving random walks and local communication
[17], [18], [19], [20], [21]. Thanks to the ARK system, the
Kilobot capabilities have been extended by superimposing
a virtual environment to the physical one, hence enabling
abilities such as wall avoidance, phototaxis, self-localisation,
pheromone laying/sensing, and task execution [22], [23], [24],
[25]. Finally, ARK allows automated logging of experimental
data to run offline analysis and have a complete overview and
control of the experiment. Kilobots and their ARK system can
be simulated within ARGoS [26], a widely used simulator in
swarm robotics research thanks to its flexibility, accuracy and
efficiency [27].

To improve the ARK system and make it a suitable tool
for studying MSI, we developed a multi-ARK system (M-
ARK)1. M-ARK allows different ARK entities to be inter-
connected over a TCP/IP network, even if they are located
in different, possibly remote places (e.g., different labs in
different countries). Indeed, although ARK is designed to
perform swarm experiments, it still has computational limits
that can be overcome by distributing the computation over
several remote machines to perform swarm and multi-swarm
experiments with a potentially infinite number of robots.
Thanks to augmented reality, M-ARK enables MSI by virtually
placing the robots of remote ARKs inside the local ARK.
This framework can facilitate collaboration between different
laboratories, which own different robotic platforms, to study
the emergent behaviour from the interaction of different types
of swarms and reduce the costs of purchasing robots. More-
over, M-ARK makes it possible to connect real and simulated
systems, by interfacing with one or multiple ARGoS instances.
This is an example of mixed reality, which enables testing MSI
with a very large number of robots while only part of these
are deployed in a physical setting, also providing a pipeline
to develop and test multi-swarm systems starting from a fully
simulated to a full real-world solution.

In this work, we demonstrate how M-ARK allows to: (i)
create a custom projection of the shared environment for

1The M-ARK software is open source and available online at [28]

Fig. 1: Single ARK setup. Made of three main components:
(i) a Base Control Station (BCS), (ii) an Overhead Controller
(OHC), and (iii) a tracking system using RGB cameras.

each swarm in the multi-swarm system, (ii) render each
swarm different from the others in terms of sensorimotor
capabilities, and (iii) support interaction and communication
across swarms. Currently, M-ARK is limited to non-physical
interactions among swarms. Hence, it is relevant for MSI
where the different swarms do not physically interact. That
is, we consider robot swarms occupying different spaces:
UAV swarms flying at different altitudes, unmanned aerial
and ground vehicles, or surface and underwater robots. Also,
M-ARK can easily model a resource collection task, where
there may be a swarm deployed to collect objects in the
environment, while another swarm do the sorting inside a
depot area. Overall, the range of possible applications of M-
ARK is large and relevant for advancing the study of MSI.

The remainder of this paper is structured as follows. Sec-
tion II describes in detail the M-ARK system analysing every
single component. In Section III, the functionalities of M-
ARK are showcased through two representative MSI problems:
dynamic heterogeneous team formation (Section III-A) and
collective resource exploitation (Section III-B). Section IV
concludes the paper with discussions on the relevance of the
proposed architecture for future multi-swarm robotics systems.

II. M-ARK SYSTEM CONFIGURATION

In M-ARK, there exists a “shared environment” which
is the combination of multiple “local environments”, each
controlled by a single ARK instance, which can be either real
or simulated. As illustrated in Fig. 1, a real ARK instance
is composed of three main parts: (i) an overhead camera
tracking system that provides real-time data on robots’ pose
and state, (ii) an overhead controller (OHC) which broadcasts
infrared (IR) signals to communicate to the Kilobots, and
(iii) a base control station to coordinate the system and
simulate the virtual environments. A simulated ARK instance
is instead a software process implemented with the ARGoS
simulation APIs, which provide a means to manage the virtual
environment and the communication between the simulated
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ARK control station and the robots [26]. M-ARK interconnects
multiple ARK instances through TCP/IP sockets, e.g., a client-
server configuration in which ARK client instances connect to
the ARK server instance.

In order to start an experiment, the ARK server socket is
opened on a predefined port, waiting for the ARK clients to
connect. As soon as all instances are connected to each other,
the experiment can begin and flows as shown in Fig. 2. The
first step is the synchronisation of the environment of all ARK
instances. In general, it is the server that is responsible for
sending a string-type message that describes all the charac-
teristics that the shared environment of all the ARK instances
must conform to. Note that ARK instances make no difference
whether they are connected to a simulated or real ARK, since
the interaction between the different ARK instances occurs
simply through an exchange of messages.

Once all instances are connected and synchronised, it is
necessary to share how the (virtual) environment in which
the robots are deployed evolves. There are two possible
approaches. A time-based approach assigns to the ARK server
the role of updating the ARK clients by broadcasting status
messages with a fixed time period Tp. To this end, every client
sends updated information about the local environment with a
fixed period Tc (usually, Tc = Tp if there is no strong reason
to have different updating periods). The server then combines
all the information received by the ARK clients into a coherent
environment state, and builds the message to synchronise all
clients on the current state. The second approach is instead
event-based. Update messages are exchanged between server
and clients only when some relevant event occurs in the
local environment, which needs to be reflected on the global
environment. Note that the reception of a message from a
client also represents an event that the server must consider
in order to propagate relevant changes to other clients. Both
methods have advantages and disadvantages. The time-based
approach allows clients to finely synchronise the evolution
of the shared virtual environment with the server, but may
also face the problem of insufficient bandwidth and message
loss. The event-based approach has a more parsimonious use
of communication, but requires much more attention in the
event definition and management. Also, message loss in the
event-based approach must be carefully considered, because
it can lead to significant deviations across local environments.
A mixed solution can also be considered, in which the server
follows a time-based approach while the clients follow an
event-based method. This can reduce the communication load
and also provide a mean to the client to verify if the events
they reported to the server have been appropriately reflected
in later updates from the server.

Another aspect relevant to the synchronisation of multiple
ARK instances concerns the possibility of different update
speeds, which can occur when simulated ARK instances
are considered. When all ARK instances are constrained to
evolve in real time, there is no alignment problem. However,
simulated ARKs may deviate from real-time execution, which
is a desirable aspect especially to speed up experiments. In
such conditions, it is necessary to ensure that the time evo-
lution of multiple ARKs is coherent. Therefore the messages

server Client 1

Connection Accepted

Local state

Init
received Init

Synchronise environment

Ask for connection 

Client N

Init
received Init

Connection Accepted
Ask for connection 

Local state

Synchronise environment

processing
local and
remote states

loop

Fig. 2: Sequence diagram for M-ARK execution. First, the
connection among all the ARK instances is established. Then,
the server sends the Init message sharing with the N clients the
initial state of the global virtual environment. In the main loop,
clients and server exchange local state and synchronisation
messages to align the local environments.

exchanged between the instances can also be exploited for
time synchronisation, hence constraining the time evolution to
the slowest ARK process in the M-ARK system. To this end,
a time-based approach is preferable.

In this work, we present an implementation of M-ARK
following a client-server, time-based approach with Tp = Tc =
2 s. In Section IV, we further discuss the possible alternative
implementations, also beyond a client-server approach.

III. CASE STUDIES

A. Dynamic Heterogeneous Team Formation (DHTF)

The first case study demonstrates the interaction between
two heterogeneous swarms to solve a strictly cooperative task.
The setup is inspired by the stick-pulling experiment [29],
which is a representative study of team formation in swarm
robotics. Effective collaborations can be achieved only when
a sufficient number of robots are present in the same col-
laboration site. In this extension of the work done in [25],
we consider the formation of heterogeneous teams, making
two swarms interact through M-ARK. As in [25], collabo-
ration sites are characterised by the complexity of the tasks
they spawn, which can be easy or hard according to the
requirements in terms of number of robots needed for task
execution (i.e., hard tasks require more robots than easy tasks).
Moreover, since we study a multi-swarm, the requirement of
one collaboration site can be different across local environ-
ments, hence creating higher variability. As soon as a team
composed of the correct number of robots in each of the two
swarms is formed, the collaboration is established, the task
is executed and the robots resume exploration in search of
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other tasks. This case study demonstrates how a relevant multi-
swarm problem can be easily implemented through M-ARK
both in simulation and in the real world, enabling a smooth
transition between the two conditions. It also shows how to
create a shared environment by connecting local environments
that have different features, such as the arena size or the type
of tasks to be executed.

1) Experimental Setup: In this case study, we connect two
ARK systems, both simulated and real. In the latter case, the
ARK server is located at the University of Sheffield, within
the Department of Computer Science (henceforth: ShARK),
featuring a square experimental arena of 1m side running
a swarm of Ns = 48 robots. The ARK client is located
at the Institute of Cognitive Sciences and Technologies of
the Italian National Research Council in Rome (henceforth:
RoARK), featuring a square arena of 0.5m side running a
swarm of Nc = 12 robots, keeping the same robot density
as in the server. At the beginning of the experiment, robots
are uniformly distributed in the arena. The arena is virtually
divided into a 4 × 4 grid, and M = 8 collaboration sites
are selected and positioned inside one of the grid cells, as
shown in Fig. 3. Each collaboration site is characterised by
a task type (easy or hard) that never changes. The positions
of the collaboration sites within the arena is the same in both
ARKs, the only differences are in: (i) the task type is randomly
chosen in each ARK, i.e., a task could be easy or hard on both,
or could be easy in one and hard in the other; (ii) the task’s
requirements (for RoARK, easy tasks require one robot, while
hard tasks require two robots; for ShARK, the requirements
are doubled). Once the right heterogeneous team formation is
achieved within a collaboration site for both ARKs, the task
is considered completed and the collaboration site becomes
inactive (see the grey circles in Fig. 3), meaning that no task
is spawned for Tr = 40 s; after this period, a task appears in
the same location with the same type as before. We choose
the value for Tr to create a non-trivial problem, so that robots

Fig. 3: DHTF experimental setup. Left: ShARK; Right:
RoARK. Magenta areas represent easy tasks. Cyan areas rep-
resent hard tasks. Grey areas represent inactive collaboration
sites, which become active again after Tr s from the last task
execution. The arcs of circles visible over active areas show
the task requirements and the current team size (light and dark
blue for ShARK, light and dark green for RoARK). Colours
on top of a robot illustrate its state: blue corresponds to the
state Walk (W ), green to state Dwell (D), and red to the state
Leave (L). See also the supplementary video.

have enough time to move away from the collaboration site
before it returns active.

2) Robot Behaviour: The robot behaviour can be described
by a finite state machine (FSM) with three states: Walk (W ),
Dwell (D), and Leave (L). Robots start in state W , in search
of tasks to be executed, and move according to a random
walk [17]. When a robot enters an active collaboration site,
it switches from state W to state D, in which it waits TD

seconds motionless for other robots to join. If at some point
the task requirements are satisfied on each ARK, the task
gets immediately executed, and the robot switches back to
state W . Otherwise, when the internal timeout expires, the
robot switches to state L, in which it moves away from
the collaboration site ignoring the task. When outside the
collaboration area, the robot switches to state W [25]. Both
robot swarms have the same behaviour.

We assume that a robot detects the task type when it enters a
collaboration site. Given that the task difficulty can be different
for the two swarms, there are three possible combinations: (i) if
the task is hard on both sides, the dwelling robot triggers a
timer TD = 60 s; (ii) if the task is hard on one side and easy
on the other, the robot triggers a timer of TD = 40 s; last,
(iii) if the task is easy on both sides the robot triggers a timer
TD = 30 s. In this way, robots wait longer in response to
different requirements for the shared environment, as the task
completion depends on coordination among the two swarms.

3) M-ARK Communication Protocol: To enable interaction
between the two swarms, the local ARKs exchange messages
related to the state of the collaboration sites. Fig. 4 provides
a simplified sequence diagram representing the interaction
between client and server. Once the connection among the
two M-ARK entities is established, ShARK (the server) sends
to RoARK (the client) an Init message, which contains a list
of the active collaboration sites, specifying the type and the
requirements for both sides. This resulting message consists of
3M+1 characters, starting with the message type identifier (I),
followed by M characters corresponding to the ID of the active
sites, which are integer values. The arena is divided in 4× 4
cells, and M IDs are randomly selected from the set {1, 16}
by ShARK. The last 2M characters indicate the corresponding
type, with a value of 0 and 1 representing respectively easy
and hard tasks for both ShARK and the RoARK. In this way,
robots from the two swarms can virtually sense the difficulty
of the overall task. Moreover, thanks to the Init message the
environments are synchronised to the same initial state. During
the experiment execution, the two entities exchange periodic
update messages every Tp = Tc = 2 s. RoARK sends a
message to ShARK containing information about the tasks that
are Ready, i.e., the ones that meet the requirements locally.
The message is a string of M + 1 characters, with the first
character (R) indicating the message type and the remaining
M characters representing 1 if the corresponding task is
ready and 0 otherwise. ShARK processes this information and
sends an Accomplished message to RoARK when the task
requirements are met globally. This message is also a string
of M + 1 characters, with the message type being indicated
by the character A and the remaining M characters indicating
whether each task has been accomplished (1) or not (0). Once
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Received Init

ShARK
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Check for 
completed 
areas

RoARK
(client)

Ask for connection 

Connection Accepted

Ready

Accomplished

Init

loop

Fig. 4: DHTF sequence diagram. In the main loop, every Tc =
2 s the client sends to the server its local state, specifying in a
Ready message the tasks where requirements are locally met.
The server, considering the client’s and its own state, sends
every Ts = 2 s a message with the shared environment state
to the client, specifying in a Accomplished message the list of
tasks that are globally completed.

a task is accomplished, the corresponding collaboration site
becomes inactive for both ShARK and RoARK. When a new
task is spawned on ShARK, RoARK is notified, and the
collaboration site becomes active again.

4) Results: We performed a large evaluation of the be-
haviour both in simulation and with a real M-ARK system
connecting ShARK and RoARK. In simulation, we vary the
size of the arenas, studying a shared environment that is either
asymmetric with a small and a large arena, or symmetric
with both arenas being small or large. We also vary the
task difficulty with three setups: (i) all easy, (ii) all hard,
(iii) randomly mixed, as shown in Fig. 3. We evaluate the
performance as the number of completed tasks. In simulation,
we perform 100 independent runs, while in the physical setting
we perform 10 independent runs (1800 s for each run). Results
are shown in Fig. 5.

As expected, we notice a similar trend in the three differ-
ent scenarios, with easy-easy tasks being executed in larger
quantity, while hard-hard tasks are those that place the higher
demands. For the mixed case, we notice that the number of
completed tasks is in between of the previous two cases.
Larger swarms accomplish more tasks than smaller ones,
despite the wider arena. This can be justified by the fact
that, while the arena and swarm size scales quadratically with
the arena side, we imposed that the task requirements scale
linearly instead. This choice was dictated by the observation
that robots mostly stop at the border of a collaboration site, im-
peding entrance of other robots. Hence, the carrying capacity
of a collaboration site scales linearly (with the perimeter) and
not quadratically (with the area). This intuition is confirmed
by the fact that, despite the swarm density remains constant
across different arena sizes, the task completion performance
only slightly increases. Finally, we consider the ShARK-

Fig. 5: DHTF results. We consider different setups:
(i) RoARK-RoARK (Ro – Ro), with both environments fea-
ture a small arena and a small swarm; (ii) ShARK-ShARK
(Sh – Sh), with both environments featuring a large arena
and a large swarm; (iii) ShARK-RoARK (Sh – Ro), featuring
mixed small and large arenas/swarms. In each condition, we
consider tasks that are all easy (E), all hard (H) or randomly
mixed (M). Real robots are tested in the Sh – Ro setup.

RoARK mixed setup executed with real robots, where the
performance is similar to the values obtained in simulation,
hence validating the simulated M-ARK system. A video of
one of the runs performed over the Sheffield-Rome labs is
available as supplementary material.

B. Collective Resource Exploitation (CRE)

The second case study demonstrates how to obtain a multi-
swarm system with robots that (i) can move and sense the envi-
ronment in different ways, and (ii) perceive and interact with
each other. We investigate the coordination of two types of
robot swarms, the slow ground swarm (SG) and the fast flying
swarm (FF), in a resource harvesting task connected through
M-ARK. The arena is divided in two regions, each containing
resources to be exploited. The FF swarm needs to make a
collective decision about the best region to be exploited [21],
and should direct the SG swarm in the corresponding area.
The SG robots can only perceive the resources locally while
performing a random walk [17], and harvest the resource when
passing over it. However, the SG swarm is not capable of
determining the most resource-rich region on its own. Instead,
it receives information from the FF swarm to move towards the
selected region for harvesting. The ground robot swarm acts
as the executor of the harvesting task assigned by the flying
robots, utilising their internal compass to navigate through the
terrain and collect the resources efficiently. The coordination
between the flying and ground robot swarms results in an
effective and efficient resource harvesting system.

1) Experimental Setup: A group of NG = 80 simulated
Kilobots, representing the SG swarm, is deployed within a
square arena of 2m side, while a group of NF = 20 simulated
Kilobots, representing the FF swarm, is deployed within a
square arena of 0.5m side. Since we are considering a shared
environment, the smaller size of the arena for the FF swarm
corresponds to a shorter time to cover any distance. Hence, the
FF robots appear to move faster than SG robots. The shared
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Fig. 6: CRE experimental setup. The red and the blue circles
represent exploitable resources. Left: the FF swarm. The LED
colour represents the robot’s commitment state: black for
uncommitted (U ), red for committed North (N ) and blue for
committed South (S). Right: the SG swarm. Note that the
SG arena is four times larger than the FF arena, in order to
simulate a different motion speed of the robots.

environment is divided into two equal parts, north and south,
and each may contain resources to be harvested by the SG
robots, respectively MN resources in the north and MS in
the south. The total number of exploitable resources present
in each region of the arena is kept constant. This means that
each time a SG robot harvests a resource, a new one appears
in a different location within the same region. We consider
two scenarios: one in which the number of resources in the
south is greater than the resources in the north (MN = 10
and MS = 35 respectively, visible in Fig. 6), and the other in
which the number of exploitable resources is the same (MN =
MS = 35 resources).

2) Robot Behaviour: In this case study, we simulate a
multi-swarm system in which swarms not only differ in motion
speed, but also in the sensory-motor and communication
abilities and in their overall behaviour. Robots belonging
to the FF swarm have to make a collective decision and
choose which of the two regions has the most resources.
Following a well-established approach for decentralised col-
lective decision-making [21], [24], each FF robot changes
its internal state between uncommitted (U )—when no region
is preferred over the other—and committed North (N ) or
committed South (S)—when the robot selects one of the
two regions as the most profitable one. Robots always scan
the arena performing a random walk [30], estimating the
density of resources for both regions and broadcasting their
internal state to neighbouring robots, both in the FF and SG
swarms within range. The uncommitted robot can change to
the state N or S in two ways: (i) spontaneously, with a
probability proportional to the perceived density of resources
in the region, or (ii) recruited by another committed robot.
When in state N or S, a robot switches to the state U either
(i) spontaneously, with a probability inversely proportional to
the perceived density of resources, or (ii) inhibited by another
robot committed to a different region. These simple rules are
known to be sufficient to lead to a collective decision for one
of the available alternatives [21], [24]. Finally, committed FF
robots only communicate to SG robots when they are outside

their preferred target region and SG robots can only receive
messages from FF robots located on top of them (within a
distance of 20 cm from the projected position on the ground).

The SG robots, instead, perform a random walk [30] to
forage for resources in their current location. If an SG robot
detects a communication signal from a FF robot, it rotates
towards the FF robot’s target region and travels straight for
about 3 seconds before resuming the random walk to continue
harvesting resources in the new location. This dynamic coor-
dination strategy enables the SG robots to efficiently harvest
resources in a profitable region by adapting their search based
on the messages from the FF robots.

3) M-ARK Communication Protocol: The communication
setup is similar to the one described in Section III-A3.
First, the two M-ARK instances—hereafter, FF-ARK and
SG-ARK—get connected, with FF-ARK acting as client and
SG-ARK as server. SG-ARK sends to FF-ARK the Active
Resources message, reporting information about the available
resources in both regions, delivering a string message of
MN +MS characters, representing inactive and active areas in
both regions, filled respectively with 0−1 values. This enables
FF-ARK to synchronise to changes in the shared environment
resulting from resource harvesting by the SG robots and their
reappearance in new positions. Also in this case, SG-ARK and
FF-ARK exchange messages each Tp = Tc = 2 s. Conversely,
FF-ARK sends to SG-ARK a message indicating the state of
the FF swarm, in which the position and the commitment state
of each FF robot is reported, so that SG-ARK can provide
the ground robots with information about which FF robots
are in communication range, and about their state. These are
also string messages, composed of 5NF bytes, i.e., 5 bytes
per FF robots, where the first four correspond to the x and y
position of an FF robot in the space and the fifth represents
the commitment. This allows simulating the communication
from FF to SG robots, enabling coordination in the resource
harvesting task.

4) Results: Fig. 7 shows the results obtained over 100
independent runs in simulation, reporting the state of the multi-
swarm in both the asymmetric (MN < MS) and symmetric
(MN = MS) conditions. When the resource distribution is
asymmetric, the FF swarm quickly converges towards con-
sensus for the south region, with all robots converging to
state S (see top-left panel in Fig. 7). As a consequence, the
SG swarm moves following the indications of the FF swarm
towards the south region and remains there, harvesting the
available resources (see the bottom-left panel). Note that, time-
wise, the convergence of the SG swarm towards the south
region is slower than the decision process performed by the
FF swarm, both because SG robots move at a reduced speed
and because they need to follow the indications of FF robots.
When the resource distribution is symmetric, the decision
dynamics are slower, but they always reach a consensus for
either north or south (see the top-right panel in Fig. 7. Indeed,
the FF swarm is either completely committed to the south
region (63% of the runs), or to the north region (37% of the
runs). As a consequence, also the SG swarm shows similar
spatial dynamics, being distributed either in the north or in
the south region, with a similar proportion as in the FF swarm
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Fig. 7: CRE results. Top panels: heatmaps showing the distribution of the number of FF robots committed to the south
region over time. Bottom panels: heatmaps showing the spatial distribution of SG robots in the north-south axis. Left panels:
asymmetric case. Right panels: symmetric case.

consensus (see bottom-right panel). Interestingly, before the
FF swarm makes a decision, the SG swarm concentrates in
the middle of the arena between the two regions until it
follows the consensus and moves either north or south. Finally,
within this case study we also tested a hybrid simulated-
physical M-ARK, to demonstrate the feasibility of running
both kinds of experiments at the same time. In this case, the
FF robots are implemented within the RoARK, while the SG
robots are implemented in a ARGoS instance, as shown in the
supplementary video.

IV. CONCLUSIONS

M-ARK provides a versatile system to support research
with multi-swarm robotics systems. The two case studies
discussed in this paper provide examples of the many pos-
sibilities it offers. Through M-ARK, different swarms can
interact, either indirectly through the environment or by means
of situated communication messages. The former type of
interaction enables stigmergy [2]. This is the easiest form
of interaction that can be implemented through M-ARK, as
it only requires that single ARK instances synchronise with
the shared environment, as shown in Section III-A. Situated
communication can also be implemented, as demonstrated in
the second case study (see Section III-B), but is limited to the
ability of Kilobots to upload data to the local ARK system.
This limitation is specific to the Kilobot platform and can be
overcome if M-ARK is expanded towards other platforms, as
discussed below.

As already mentioned, physical interactions across multiple
swarms are currently not possible within M-ARK. With the
available technology, it may be possible to enable some
rudimentary form of collision avoidance, by creating a no-
walk zone in the local environment around the position where
Kilobots from a different ARK are located. This can enable

some form of density-dependent behaviour also in the case of
MSI, which could be relevant for scalability studies given that
robot density is the most limiting factor [31].

We have demonstrated how to connect remote labs enabling
cross-country experiments. By supporting both simulated and
real environments, M-ARK can boost research and demonstra-
tions with physical swarms, favouring scientific collaboration
and promoting MSI research. M-ARK can also be seen as a
development tool, to analyse multi-swarm experiments starting
with few robots and subsequently increasing the swarm size.
Moreover, M-ARK reduces the simulation-reality gap enabling
studying MSI by starting from fully simulated experiments
running on several instances of the ARGoS simulator and
ending with fully real experiments that interconnect several
physical ARK instances.

Most importantly, it is possible to expand M-ARK be-
yond the client-server approach demonstrated here. In case of
several clients, communication and synchronisation with the
server may represent a bottleneck, especially if implemented
with a time-based approach as demonstrated in this paper.
When more than two swarms have to interact, an event-based
decentralised solution is preferable. For example, a Distributed
Hash Table could be exploited to support message exchange
among local ARKs when events occur that may not be relevant
to any swarm. Taken together, all these aspects can boost the
possibilities of usage of M-ARK.

Finally, we have demonstrated that it is possible through
M-ARK to study multiple swarms where robots have different
sensory-motor capabilities. Even if the underlying robotic
platform is always the Kilobot, differences can be created by
virtualising both sensors and actuators. Moreover, differences
in scale between local representations of the same environment
support the implementation of different velocities for the
robots, allowing for instance to simulate robots that move
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faster in one of the environments, as showcased in both case
studies presented here. Extending the M-ARK concept to
other robotic platforms than the Kilobot can further remove
barriers in the study of multi-swarm systems. Moving from
M-ARK towards a Multi-Augmented Reality for Swarms (M-
ARS) just requires a centralised local positioning system and
a bidirectional communication channel between robots and the
local ARS. This is feasible for several commercial platforms,
including ground robots such as the e-puck [32] or even aerial
robots like the crazyflie [33]. Thanks to augmented reality,
swarm robotics research can reach far beyond what has been
achieved to date.
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