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Collective animal behaviour is a subfield of behavioural ecology, making extensive use of its tools of

observation, experimental manipulation and model building. However, a fundamental behavioural
ecology approach, the application of optimality theory, has been comparatively neglected in collective
animal behaviour. This article seeks to address this imbalance, by outlining an evolutionary theory
framework for the discipline. The application of optimality theory to collective animal behaviour requires
a number of questions to be addressed. First, what is the correct quantity to optimize? This can be
achieved via a combination of considering the organisms' life history, alongside tools such as statistical
decision theory and stochastic dynamic programming. Second, what mechanism is appropriate for
optimal behaviour? This involves ensuring that models are self-consistent rather than assuming
parameter values. Third, at what level of selection does optimization act? Selection acts on the individual
except in very particular circumstances, yet collective animal behaviour phenomena are group level, thus
introducing a risk of confusing at what level adaptive properties emerge. This article presents examples
under each of the three questions, as well as discussing mismatches between theory and observation. In
doing so, it is hoped that collective animal behaviour fully inherits the tools and philosophy of its parent

discipline of behavioural ecology.
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Behavioural ecology aims ‘to try and understand how an ani-
mal's behaviour is adapted to the environment in which it lives'
(Davies et al.,, 2012, p. 5). One of the discipline's founding figures,
Nikolaas Tinbergen, posed four questions for behavioural biologists
(Table 1); these questions can be characterized according to
whether they provide a static or a dynamic account of behaviour
and, also, in thinking congruent with that of Ernst Mayr (Mayr,
1961), whether they provide an ultimate (evolutionary) or proxi-
mate (developmental/causal) view (Tinbergen, 1963). In this article
we argue that the dynamic and ultimate views on collective animal
behaviour have received much less attention compared to the large
literature focused on static behaviour and its proximate causes.

Given its aims, the methods of behavioural ecology are typically
characterized by (controlled) experimental observation of animal
behaviour, coupled with optimality analyses of behaviour.
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Examples of the latter are diverse and cover specific examples, such
as mating behaviour of flies (Parker et al., 1993) and patch foraging
behaviour (Pleasants, 1989), as well as the application of tools such
as evolutionary game theory (Smith, 1982; Smith & Price, 1973),
statistical decision theory (McNamara & Houston, 1980) and sto-
chastic dynamic programming (Houston & McNamara, 1999;
McNamara & Houston, 1980). As the opening quote in this section
shows, the logic of applying optimality theory is broadly that nat-
ural selection is an optimizing agent, and hence animal behaviour is
expected to be well fitted to its typical environment (Davies et al.,
2012; Parker & Smith, 1990). Two types of optimal trait are typi-
cally identifiable: frequency dependent and frequency independent
(Parker & Smith, 1990). Frequency-dependent traits are often
analysed using evolutionary game theory, whereas frequency-
independent traits are analysed using tools imported from engi-
neering and statistics, such as stochastic dynamic programming
(Mangel & Clark, 1988) and signal detection theory (Green & Swets,
1966).

The application of optimality theory is caveated, however, by
noting that it can be easy to misidentify the true target of optimi-
zation for natural selection (Parker & Smith, 1990), that controlled
experiments, especially lab-based, may take animal behaviour
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Table 1
Tinbergen's ‘Four Questions’ (Tinbergen, 1963), categorized according to ultimate versus proximate (Mayr, 1961), and static versus dynamic views

Static view Dynamic view

Proximate view How is the behaviour generated? (Physiology, e.g.
Seeley et al., 2012; Couzin et al., 2002; Couzin & Franks,
2003)

How is the behaviour advantageous? (Survival value,
e.g. Rands et al., 2003; Bazazi et al., 2016; Hunt et al.,
2020; Mann, 2018; Mann, 2020; Marshall et al., 2019;
Reina & Marshall, 2022)

How does the behaviour develop? (Ontogeny, e.g. Reid et al.,
2015)

Ultimate view How did the behaviour evolve? (Phylogeny, e.g. Reina &
Marshall, 2022)

Examples from collective animal behaviour, including some discussed in this article, are situated within this matrix according to the question or questions they answer. Since

this article focuses on the ultimate view, such studies are overrepresented compared to their true frequency in the literature, as discussed in the text.

outside of its typical environment (Fawcett et al., 2014), and that
constraints including robustness may impact the extent to which
narrowly defined optimality can be achieved (McNamara &
Houston, 2009).

Over the past few decades, the study of collective animal
behaviour has emerged as a subfield of behavioural ecology (e.g.
Sumpter, 2010), and been incorporated into standard textbooks
(Davies et al., 2012). However, optimality theory, one of the afore-
mentioned twin pillars of behavioural ecology, is limited in text-
book descriptions of, and in published research into, collective
animal behaviour. For example, of 24 pages on optimality models
listed in the index of the field's primary textbook (Davies et al.,
2012), none feature in the chapter on living in groups; in fact
optimality models do feature in this chapter, but are primarily
focused on the behaviour of individuals living within the context of
groups (frequency-dependent optimal traits, e.g. evolutionarily
stable vigilance levels in groups, McNamara & Houston, 1992;
foraging strategies in groups, Mesterton-Gibbons & Dugatkin, 1999;
optimal versus stable group sizes, Sibly, 1983), with only a brief
reference to a genuine group level ‘wisdom of the crowd’ effect in
which pooled estimates of something are more accurate than
typical individual estimates (Galton, 1907). In contrast, group level
behaviours such as shoaling by fish (Couzin et al., 2002) and traffic
flow in social insects (Couzin & Franks, 2003) are described
alongside computational models of mechanisms giving rise to these
behaviours. Similarly, in the index of an influential textbook of the
collective animal behaviour subfield (Sumpter, 2010), optimality
features only in the context of optimal and stable group sizes (e.g.
Ame et al.,, 2006; Sibly, 1983); again, however, other optimality
models in the context of living within groups do feature, with
similar examples to those just mentioned including group foraging
(Vickery et al., 1991) and synchronization (Rands et al., 2003).

In addition, in research articles, there is only a comparatively
small literature on the application of optimality theory to collective
animal behaviour, examples of which are given below. When
optimality reasoning is applied to collective animal behaviour,
however, it is easy to apply it at the incorrect level of organization,
neglecting crucial details of natural selection theory in the process.
Alternatively, the models presented can be partially analysed, with
hidden assumptions that drastically change the conclusions drawn;
this violates the principle of ‘self-consistency’ previously developed
by theoreticians in behavioural ecology (e.g. Houston & McNamara,
2002).

The focus of collective animal behaviour on proximate expla-
nations for behaviour comes despite Tinbergen himself proposing a
number of interesting ultimate explanation questions for collective
behaviour, such as why birds flock densely when attacked by a bird
of prey (Tinbergen, 1963, p. 417), considering the adaptive benefit of
the waggle-dance for honey bees, Apis mellifera, in both foraging
and swarming (Tinbergen, 1963, p. 419), and arguing that the
‘Physiology of Behaviour’ he proposed should also seek to explain
‘supra-individual societies’ (Tinbergen, 1963, p. 416). It is the

purpose of the present article, therefore, to argue for an overdue
shift in the field to embrace the tools of optimality theory and their
application to collective animal behaviour models. To achieve this,
we highlight three key questions to help guide such applications,
with motivating examples from the literature of how these ques-
tions are addressed. The examples focus primarily on the relatively
recent application of decision theory and stochastic dynamic pro-
gramming to collective animal behaviour; other areas, such as
collective motion, will require appropriate optimality theory to be
imported or developed. The summary thesis expressed is that in
order to faithfully explain both collective animal behaviour as it is
and propose theories that may guide empirical research into col-
lective animal behaviour, it is essential to always bear questions
such as these in mind.

It is worth noting that, while both collective animal behaviour
and its parent discipline, behavioural ecology, focus on animal
behaviour, there is growing realization than nonanimal organisms
exhibit interesting and rich behaviours, which can fruitfully be
studied through the lens of evolution, for example unicellular or-
ganisms (Miller & Bassler, 2001) and even cells within a body
(Coburn et al., 2013; Davidescu et al., 2023). Hence although
throughout this article we use the phrase ‘collective animal
behaviour’, it should be remembered that in principle the argu-
ments we seek to make here should apply equally to any other
collective biological system that is the product of evolution through
natural selection.

THREE QUESTIONS FOR COLLECTIVE ANIMAL BEHAVIOUR
MODELS

In our view, in applying optimality theory to any collective
behaviour it is essential to answer not four questions, but three; in
fact, these three questions are general ones that any application of
optimality theory requires to be answered correctly, but they are
here illustrated with reference to failures, and successes, in doing
so for collective animal behaviour models. As we show below, the
final question, when applied to collective animal behaviour, also
has the potential to generate interesting juxtapositions between
optimality at different levels that are not seen when considering
individual organisms alone.

The three questions, illustrated in Fig. 1, are as follows. Question
A: what quantity should be optimized? Question B: what behav-
ioural mechanism should be used? Question C: at what level should
behaviour be optimized?

Question A: What Quantity Should Be Optimized?

In any optimization problem an objective function, or quantity
to optimize, must be identified. In analysing any system under
natural selection, the ultimate answer to this question has to be
evolutionary fitness, properly defined in terms of long-term
evolutionary descendants (McNamara et al., 2011; Metz et al,,
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Figure 1. There are three main questions that one should answer when applying optimality theory to collective animal behaviour. For each question, we depict representative
examples. (a) What quantity should the group optimize? For example, honey bees making collective decisions on their future nest site location may be optimizing different
quantities; they may optimize the speed—value trade-off (Seeley et al., 2012), optimize the speed—cohesion trade-off (Franks et al., 2013), or consider other criteria such as the sites'
distance (Franks et al., 2008). (b) What mechanisms should be used? For example, when a group makes a binary collective decision, to flee or not to flee from a possible predator, the
optimal rule to integrate social information may be different depending on the costs of an incorrect decision; possible rules can be to follow the majority of votes (King & Cowlishaw,
2007), use a super- or submajority quorum (Marshall et al., 2019), or simply follow the individual spontaneously identified as the group leader through confidence signalling
(Marshall et al., 2017; Reina et al., 2022). (c) At what level is natural selection optimizing the behaviour? For example, starlings are self-interested individuals which aim to
maximize individual fitness rather than flock fitness; therefore, their collective behaviour during coordinated flights (Cavagna et al., 2010) evolved to bring an individual level
advantage. Instead, eusocial insects, such as honey bees, are selected primarily at the colony level and therefore their behaviour has been optimized to maximize the fitness of the

group (Holldobler & Wilson, 2009; Wheeler, 1926).

1992), although even this is nuanced by inclusive fitness consid-
erations (Hamilton, 1964; Marshall, 2015). Ultimate evolutionary
payoffs must, however, be related back to intermediate behavioural
objectives; in behavioural ecology this is formalized in the concept
of reproductive value (McNamara & Houston, 1986), although again
yet further proxies must often be introduced in analysing any
behaviour not directly relating to reproductive decision making.
Hence here we consider three different types of behaviour: col-
lective decision making, collective emigration and collective
foraging.

Example 1: collective decision making
Collective and decentralized decision making has emerged as a
rich subfield of collective animal behaviour, with applications in

collective foraging (e.g. Robinson et al., 2005), predator avoidance
(e.g. van der Marel et al,, 2019) and (e)migration (e.g. Seeley &
Visscher, 2004). In analysing collective decisions, it has been
common to import criteria from neuroscience and psychology. In
particular, excellent work has been done in the application of
optimal decision theory to perceptual decisions (Bogacz et al.,
2006). This research has shown that the mechanism to achieve
the theoretically best compromise between the speed and accuracy
of decision making is the drift diffusion model (Ratcliff, 1978), a
simple description of decision making that implements the statis-
tically optimal sequential probability ratio test (Wald & Wolfowitz,
1948). Therefore, there is an implicit assumption in psychology and
neuroscience, imported into collective animal behaviour (Franks
et al., 2003; Latty & Beekman, 2011; Marshall et al., 2009), that it
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is speed—accuracy trade-offs that should be optimized. However,
while this assumption is sound when decisions are rewarded by
whether they are correct or not, which frequently occurs in labo-
ratory experiments, in the naturalistic decisions that behaviours
evolved to solve decisions are frequently rewarded by the value of
an option selected. Thus speed—accuracy trade-offs are unlikely to
be optimized for many common decisions; rather, optimization
may act on the speed—value trade-off (Pirrone et al., 2014, 2022).
While it can be argued that in psychological and neuroscientific
experiments subjects should be able to optimize the decision
problem they are actually faced with (e.g. Fudenberg et al., 2018), it
is more likely that for sufficiently simple decision tasks the mech-
anisms used actually function as if solving the decision problem
they were evolved for (Pirrone et al., 2014, 2022). Furthermore, for
collective animal behaviour it is even less likely that a decentralized
decision system, without any potential for top—down cognitive
control, can adapt to solve problems other that those it evolved to.

As we discussed above, the optimality toolkit of behavioural
ecology includes methods to determine how sequential decisions
should be made optimally, in the form of (stochastic) dynamic
programming. Within neuroscience this has recently been applied
to the field of value-based decision making (Tajima et al., 2016,
2019). Interestingly, these analyses predict that value-based de-
cisions are also optimally solved by a version of the drift diffusion
model, which exhibits the characteristic of insensitivity of reaction
times to the absolute magnitude of alternatives under consider-
ation. Thus, it appears that value-based decisions should be opti-
mized by precisely the same mechanism as perceptual decisions. A
resolution to this comes from realizing that the results of Tajima
et al. (2016, 2019) rest on an unrealistic assumption, that the cost
of time is purely linear (i.e. the optimized quantity is the expected
decision payoff in terms of linearly discounted time). While a linear
cost of time may be the case for many laboratory experiments,
where for example there is a fixed total experimental duration so
time spent on one trial takes an equal quantity of time away from
future trials, in naturalistic decision scenarios, as in dynamic pro-
gramming, it is more usual to assume that time spent not deciding
increases the chance that an option becomes unavailable, due to
interruption, competition, etc. When time is discounted multipli-
catively in this way the drift diffusion model is no longer optimal
(Marshall, 2019; Marshall et al., 2021; Steverson et al., 2019), and
phenomena such as magnitude-sensitive reaction times are pre-
dicted, which aligns with experimental observations in psychology
of both perceptual and value-based decisions (Pirrone et al., 2018;
Teodorescu et al., 2016). Of particular relevance for this article, the
search for magnitude-sensitive reaction times originated with the
analysis of a model of collective decision making during nest site
selection by honey bee swarms (Pais et al., 2013; Seeley et al., 2012).
This search led to a reconsideration of the quantity for optimization
in both individual and collective decision making (Pirrone et al.,
2022; Reina et al., 2023; Teodorescu et al., 2016).

Example 2: collective emigration

As well as misidentifying accuracy as being of key significance
for decisions in collective emigration, as outlined immediately
above in example 1, other criteria exist that need to be considered,
especially for social insects. Social insect colonies such as those of
ants and honey bees are tightly functionally integrated superor-
ganisms (Oster & Wilson, 1978; Wheeler, 1911); thus, in social in-
sect emigrations it is important to ensure cohesion of the colony.
Franks et al. (2013) identified a speed—cohesion trade-off for
emigrating colonies; while selecting the best of the available nest
sites is crucial for a colony of social insects, it is also essential that a
high degree of unanimity is reached, so that all colony members
end up in the same site. Utilizing information-theoretic measures,

Franks et al. (2013) showed that in decisions over multiple alter-
native nest sites, the accuracy of a decision becomes increasingly
decoupled from the cohesion of the decision, indicating that opti-
mizing the speed—accuracy trade-off by itself is not sufficient to
guarantee cohesion of the colony. While speed—value trade-offs for
decisions such as nest site selection are now replacing
speed—accuracy trade-offs (see example 1 above), the logic for the
decoupling of accuracy and cohesion can, in principle, also be
generalized to the case of decision value and cohesion.

Example 3: collective foraging

In individual foraging, theory has been developed to determine
the correct optimization criterion, such as energetic intake
(Charnov, 1976), or energetic efficiency (Kacelnik et al., 1986) for
example. In collective foraging, further complexity is added to the
optimization problem. For example, colonies can target an ideal
free distribution (Tregenza, 1995), or they can approximate prob-
ability matching which may be optimal under some scenarios
(Kelly, 1956). Colonies can use positive feedback to recruit foragers
when scarce resources are detected (Shaffer et al., 2013), or use
negative feedback to stop recruitment when resource patches have
become exhausted (Robinson et al., 2005) or are dangerous (Nieh,
2010). As well as simple net energetic maximization, superorgan-
isms can also target more complex nutritional requirements (Bazazi
et al., 2016) just as individually optimal agents can (Houston et al.,
2011; Marshall et al., 2015). However, few analyses consider the
importance of variability in performance. Reina and Marshall
(2022) considered precisely this problem, when they showed that
negative feedback signals can be an important regulatory function
in recruitment systems based on positive feedback, reducing vari-
ance around target foraging distributions, and implementing
speed—adaptation trade-offs in dynamic environments. Other work
has investigated how a social insect colony can collectively maxi-
mize its exploration efficiency when searching for food in an un-
known environment. Hunt et al. (2020) have taken the optimality
result for probability matching in foraging (Kelly, 1956), and asked
how an ant colony can function as a Bayesian superorganism. This
approach derives appropriate behavioural rules from sampling
theory, such as Markov Chain Monte Carlo, then examines behav-
ioural rules for ants that can approximate this, and evaluates their
behaviour against these rules.

Foraging in an unknown environment also requires the opti-
mization of the explore—exploit trade-off. For example, optimality
theory, in the form of the dynamic programming approach
described in example 1 above, has been applied to decentralized
decision making by slime moulds (Physarum) solving a classical
statistical decision problem, the two-armed bandit (Reid et al.,
2016). This problem, in which an agent must sample between
noisy sources before finally committing exclusively to one source,
formalizes the explore—exploit trade-off and is a reasonable
approximation of the foraging problem for Physarum. The optimal
solution of this problem, the Gittins index, has also inspired neu-
roscientists (Cohen et al., 2007), and was used by Reid et al. (2016)
as a theoretical limit to evaluate real organismal performance, and
approximation heuristics, against. Elsewhere in the field of collec-
tive animal behaviour, dynamic programming has been used to
derive leader/follower dynamics in foraging pairs (Rands et al.,
2003).

During collective foraging social insects coordinate their
behaviour, forming efficient transport networks connecting the
nest and food sources (Chandrasekhar et al., 2021) or multiple nests
(Cook et al., 2014). While the initial intuition assumed that the
colony would minimize the length of the transport network, recent
research has shown different results. In fact, when needed, turtle
ants, Cephalotes goniodontus, sacrificed path length (i.e. chose
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comparatively longer paths) in favour of network robustness (Cook
et al., 2014) and traffic coherence (Chandrasekhar et al., 2021).

In summarizing Question A, the optimized quantity depends on
the task as well as the constraints and needs of each species and
their ecology. For collective foraging, for example, we have shown
that it is a complex process involving multiple activities, such as
exploration of the environment, distribution of animals among the
different resources, creation and maintenance of transport net-
works; the collective behaviours to perform each of these activities
can be analysed in terms of optimal strategies, and careful
consideration is required of the appropriate quantities to optimize,
such as energy intake, energy efficiency, search efficiency,
explore—exploit trade-off and transport network robustness.

Question B: What Behavioural Mechanism Should Be Used?

Having established the quantity that should be optimized, the
next important question is to identify what behavioural mecha-
nism should be used. This is closely related to the challenge of ‘self-
consistency’ in evolutionary modelling, in which at its simplest
important quantities or parameters in models should be conse-
quences of the modelling, rather than assumptions being fed into it
(Houston & McNamara, 2002). In individual behaviour this is well
illustrated by models that seek to explain the evolution of optimism
and pessimism in decision making (Johnson & Fowler, 2011), which
may be traced back to an arbitrary assumption that individuals only
choose options having a probability greater than one half, regard-
less of priors and relative costs and benefits of choice outcomes
(Marshall et al., 2013).

Example 1: simple majority quorum rules

For our examples of identifying behavioural mechanisms that
are not self-consistent, we turn to a mainstay of collective animal
behaviour research, the ‘wisdom of the crowd’ as manifested in the
‘Condorcet jury theorem’ (King & Cowlishaw, 2007). This simple
combinatorial argument that shows how integrating votes im-
proves group decision accuracy has formed the basis for arguments
that increasing group size can lead to worse decisions by groups
than by individuals (King & Cowlishaw, 2007) or, similarly, that
group decision accuracy is maximized by intermediate group sizes
(Kao & Couzin, 2014). Both of these studies, however, rest on hid-
den assumptions in the application of the simple Condorcet argu-
ment: first, a decision ecology assumption that there is only one
type of error in any decision problem, and second, a self-
consistency assumption that majority voting is the best decision
mechanism to use.

In fact, both assumptions turn out to be crucial in correctly
applying optimality theory to collective decisions of this nature.
First, it must be understood that any simple decision has two
possible error types: for example, incorrectly identifying that a
predator is absent when it is present, and incorrectly identifying
that a predator is present when it is absent. Different error types in
an organism's natural environment can have very different costs
and benefits for the decision-maker and may also occur with very
different frequencies. Appreciating this subtlety, and building on
earlier work (Wolf et al.,, 2013) in analysing for effective non-
majority decision thresholds, allowed Marshall et al. (2019) to show
conditions under which simplistic Condorcet reasoning can make
systematically incorrect predictions about how groups can and
should reach decisions; in doing so they showed how sub- and
supermajority decision thresholds optimally relate to decision
ecology, namely the costs of different error types and the prior
probabilities of different states of the world (Marshall et al., 2019).

Similarly reliant on an assumption of a simple majority decision
rule is the model of Kao and Couzin (2014 ), which shows how group

decision accuracy can be maximized by intermediate group sizes,
rather than additional decision-makers always improving collec-
tive decisions. This model considers decision-makers choosing
whether to attend to a low reliability uncorrelated cue (i.e.
amenable to the wisdom of the crowd effect through multiple
observations), or a high reliability correlated cue (i.e. no improve-
ment from multiple observations, due to correlation). Each indi-
vidual decides which cue to attend to through a probabilistic
‘voting strategy’, then observes the indicated cue, and votes
accordingly with the group decision reached via a majority decision
rule as in the standard Condorcet model. Kao and Couzin (2014)
showed that group accuracy is maximized at intermediate group
sizes when the behaviour of the individual is based on a given set of
voting strategies and majority decision rules. Making assumptions
on the behaviour of the individuals is not in agreement with the
self-consistency principle, that key parameters should emerge from
analyses rather than be assumed. In fact, their analysis (Fig. 1(b) in
Kao & Couzin, 2014) shows that if individuals are free to choose
their voting strategy then the wisdom of the crowd effect can be
restored in their model. By forcing the individual behaviour
through an a priori assumption, they were able to show that when
individuals are not free to choose their voting strategy, for example
due to concurrent cognitive, social or environmental constraints,
then intermediate group size can maximize collective performance.
However, while such assumptions may have value, they should be
explicitly acknowledged and, ideally, justified.

Example 2: sequential collective decisions

First principles applications of optimality theory to other as-
pects of collective decision making have also been attempted. An
early example proposed the application of the Condorcet jury
theorem to decision making by house-hunting honey bee colonies
(Conradt & List, 2009). As described under Question A, this is an
inherently sequential decision problem, for which the appropriate
theory is based on sequential sampling models; yet the review did
also identify the utility of a comprehensive theory of single-shot
decision making from the political science literature (Ben-Yashar
& Nitzan, 1997), which was only fully developed in the collective
animal behaviour literature comparatively recently (example 1
above and Marshall et al., 2019).

Most collective decisions are, however, sequential in nature,
making simple models based on signal detection theory compara-
tively unrealistic. As well as the general, model-free, theory of
sequential decision making (Ratcliff, 1978) outlined under Question
A above, a number of model-based approaches based on first
principles have been derived. Of particular interest are sequential
choice models where focal actors apply Bayesian reasoning to
integrate the social information from the previous choices they
have observed, along with their personal sensory information
(Mann, 2018, 2020). This approach has successfully been applied to
explaining observed variability in decision making that appears
inconsistent with optimality (Mann, 2018), and how collective de-
cision making can function in groups of rational decision-makers
with differing opinions (Mann, 2020). This approach can then be
extended including new quantities to be optimized (Question A),
such as the cognitive costs for information processing (Mann,
2021b) or the resilience to connectivity changes in the social
environment (Mann, 2022).

Example 3: from individual level optimization to emergent collective
behaviour

By considering the quantity that individuals should optimize, it
is possible to build bottom-up self-consistent descriptions of
emergent collective behaviour. This approach is also advocated by
Davis et al. (2022) in a recent article that suggests modelling



194 J. A. R. Marshall, A. Reina / Animal Behaviour 210 (2024) 189—197

collective animal behaviour as the results of optimal foraging de-
cisions. In their view, optimal foraging theory and the marginal
value theorem offer the mathematical framework to describe the
optimal actions that individuals should take.

This bottom-up approach can explain collective decision making
under a variety of social and ecological conditions. Similarly, Mann
(2021a) has recently shown that minimization of individual
cognitive costs can explain the emergence of cognitive heteroge-
neity within groups of self-interested individuals that make col-
lective foraging decisions. The counterintuitive result of natural
selection for reduced ability has also been documented by
McNamara and Wolf (2022).

This bottom-up modelling approach based on optimal individ-
ual actions is not limited to self-interested individuals but it is also
useful in modelling eusocial species where individuals have aligned
interests. For instance, Lecheval et al. (2021) identified that, in
building transport networks between nests and food patches, in-
dividual wood ants, Formica rufa, trade between patch distance and
food quality. Building their model based on these individual level
rules, they could explain the collective formation and maintenance
of complex transport networks with emergent properties of
network robustness, maximization of energy intake and minimi-
zation of transport costs.

Example 4: including context in the model

To describe, investigate and understand the mechanisms that
regulate collective animal behaviour, it is crucial to include in the
model the context in which the system operates. Considering the
population in isolation from its environment can lead the modeller
to introduce incorrect assumptions. The importance of context in
understanding collective animal behaviour is exemplified by
research explaining the different social interaction mechanisms
employed by ants to regulate foraging activities (Gordon, 2016,
2021a). Ants living in arid deserts do not leave their nest to forage
until they receive social information that food is present. Unsuc-
cessful foraging in the desert is very expensive (in terms of water
loss) and therefore the default behaviour is to avoid exiting the nest
if not told otherwise. The behaviour is diametrically opposed in
ants living in food-abundant environments, as in the tropics. The
default behaviour of these ants is to exit the nest and forage until
they are told otherwise by peers signalling potential dangers
(Gordon, 2016, 2021a).

Considering the specificities of the environment in which the
group operates has also been key in the work by Di Pietro et al.
(2022), who explained how the coordinated behaviour of leaf-
cutter ants could evolve.

Example 5: geometrical aspects

While Chang et al. (2021) expected to find that a multisite-
nesting arboreal ant colony would optimize the transport
network efficiency, their empirical observation did not confirm
their intuition. Instead, they found that a simpler individual
behaviour could explain the observed patterns. Given the
geometrical properties of the environment, individuals following a
simple random walk explained the collective choice of the nest by
arboreal ants.

Including geometrical constraints in models of collective
attention allowed Sosna et al. (2019) to explain an increase in col-
lective sensitivity in the presence of a threat as an adaptive change
of the social interaction network. Indeed, modelling collective de-
cision making as a process made by individuals embedded in a
geometrical space, rather than through spaceless models, can
enable a better understanding of how collective decisions unfold
over time (Couzin et al., 2005; Strandburg-Peshkin et al., 2015), and

generate crucial insight on a general decision-making mechanism
across species (Sridhar et al., 2021).

Question C: At What Level Should Behaviour Be Optimized?

Assuming we correctly identify both the criteria to optimize and
the behavioural mechanisms to be optimized, there remains the
question of at what level selection acts as an optimizing agent.
While this is a general question for behavioural ecology, since in-
dividual level behaviour has a long history of erroneous explana-
tions due to confusion over levels of selection (Wynne-Edwards,
1962), for collective animal behaviour the problem can appear
particularly acute, as collective behaviours manifest at the group
level yet selection acts primarily at the individual level. To reca-
pitulate the evolutionary logic, selection acting on individuals will
far outweigh selection acting on groups when those groups are only
weakly genetically related (Williams, 1966); thus, suicidal behav-
iour to help unrelated members of a population is, for example,
logically impossible. It is only when groups are highly genetically
related that natural selection has the capacity to optimize group
level behaviours directly (Bourke, 2011; Gardner & Grafen, 2009).
For example, in the extreme case of clonal populations, which have
maximal group relatedness, extreme division of labour can arise,
with behavioural and morphological variation among different
members of a group in order to optimize group level behaviour
(Cooper & West, 2018). Since collective animal behaviour re-
searchers study a gamut of species ranging from those living in
unrelated groups, via family groups, through to the eusocial insects,
this question assumes particular importance for the subdiscipline.
In particular, collective animal behaviour offers an interesting new
class of questions: how can selection for optimality at the individual
level translate to (sub)optimality at the group level?

The earliest example of applying evolutionary reasoning to
living in groups is due to W. D. Hamilton, who considered the se-
lective pressures that could lead to dynamic groups forming due to
predator evasion (Hamilton, 1971). Collective vigilance has also
been modelled as an important ultimate cause for the evolution of
group living (Pulliam, 1973). However, except at a rudimentary
level, these early efforts at explaining group living do not explain
the complex dynamical behaviour observed in many group-living
species. Crucially, in explaining such behaviour, it is essential to
identify the appropriate level of selection to consider. As discussed
above, important early mechanistic modelling work was done in
explaining a variety of collective motion patterns involved in ani-
mal groups consisting of predominantly unrelated individuals
(Couzin et al,, 2002). However the rules derived are descriptive
rather than normative, and do not address questions of optimality,
although optimization techniques can be used to rediscover similar
behaviours under simulated predation threat (Demsar et al., 2015;
Wood & Ackland, 2007). Outside of predation risk, identifying
suitable optimization criteria for collective motion is challenging,
but may include aerodynamic or hydrodynamic considerations
(Belden et al., 2019; Li et al., 2021), sensing considerations (Berdahl
et al, 2013), or even the application of emerging ideas from
neuroscience such as ‘surprise minimization’ (Heins et al., 2023) to
explain classical collective motion patterns. As always, however, it
is necessary to offer a justification for the optimization criterion in
terms of what natural selection shapes behaviour for. Other re-
searchers have proposed that information transfer in groups such
as starling flocks may be important, and have used approaches from
statistical physics to detect and model scale-free correlations in
starling flocks, arguing that increased propagation speed of infor-
mation about predators, for example, helps the flock members
avoid predation (Cavagna et al., 2010). This approach, however, is
implicitly group selectionist in the original sense of Wynne-
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Edwards (1962); therefore, work is needed to identify how selec-
tion at the individual level within groups can give rise to such
effects.

The above examples highlight an interesting source of research
questions for optimality theory in collective animal behaviour, not
present in classical behavioural ecology, namely how individual
level selection can lead to group level optimality. While for the
social insect colony examples discussed in Questions A and B this is
straightforward, since given the extreme reproductive division of
labour in the eusocial insects selection can act effectively at the
superorganismal level (Bourke, 2011; Gordon, 2021b), the imme-
diately preceding examples show that for unrelated groups the
question is much more nuanced. Returning to the collective deci-
sion examples of Questions A and B, one approach is to consider
whether selection on unrelated individuals within a group aligns or
not, which can shift the pressure between optimal signalling, and
optimal signal processing, within a group (Marshall et al., 2017).
Potentially more interesting still is the study of when decision-
making behaviour that is optimal at the individual level leads to
either optimal or suboptimal group level performance. For
example, Reina et al. (2022) have shown that groups of rational
Bayes-optimal decision-makers undergo cascades of incorrect in-
formation when decisions are made simultaneously, and, instead,
collective accuracy is restored in asynchronous scenarios where
better informed individuals emergently decide first. Evolutionary
trajectories in collective animal behaviour in the round can also be
traced out using optimality theory; returning to collective foraging,
for example, Reina and Marshall (2022) showed how individual
level selection transitioning to genuine group level selection can
lead to the progressive refinement of signalling systems.

Behaviour that is at first sight regarded as suboptimal or irra-
tional can be explained by considering the appropriate selection
level (individual or group). For example, experiments with Lasius
niger ants show that individual ants are (irrationally) risk adverse
(De Agro et al., 2021); however, their apparently irrational actions
lead the colony to maximize its throughput with rational, risk-
indifferent, collective behaviour (Hiibner & Czaczkes, 2017). Simi-
larly, modelling optimal resource collection at the level of the col-
ony can explain suboptimal foraging behaviour of the individual
ants (Baddeley et al., 2019). Honey bees also work for the interest of
the colony and readily increase their individual level burden to
adaptively change the colony morphology and improve its collec-
tive mechanical stability (Peleg et al., 2018).

In summary, studying optimality of behaviour, whether at group
or individual level, must take into explicit consideration how be-
haviours are selected with respect to the reproductive unit (Fig. 1).
For instance, in eusocial insects, the reproductive unit is primarily
the colony and therefore selection of collective behaviours is
stronger than in group-living species of self-interested animals,
such as fish or birds. Recognizing and applying this correctly allows
a theoretically motivated explanation of (sub)optimality at both the
individual and collective level, offers the potential for studying the
phylogeny of collective behaviour during the transition to group
living, and offers testable hypotheses for behavioural and
comparative studies.

DISCUSSION

Our original motivation for this article has been to argue for an
evolutionary theory of collective animal behaviour. Tinbergen's
‘four questions’ provide an appropriate framework for such a the-
ory, spanning both timescales and levels of explanation (Tinbergen,
1963). In Table 1, we situate the examples reviewed in this article
within that framework. Our focus has been on a comparatively
neglected area of behavioural ecology within its subdiscipline of

collective animal behaviour, the use of optimality theory, to moti-
vate three further questions for those seeking explanations under
the ultimate causal view of Tinbergen: what quantity should be
optimized, what mechanism should be used and at what level
should selection operate? As noted above, the application of opti-
mality theory is not an argument that behaviour should be optimal,
and mismatches between theory and observation necessitate a
revision of theory (Parker & Smith, 1990). In fact, the simple models
of optimality theory can be apt to oversimplify. For example, while
elementary collective decision theory indicates that wider inte-
gration of opinions within the group should always be beneficial, a
series of studies of opinion sharing in more complex environments
and more complex decision tasks reveals that density effects can
lead to restricted information sharing improving performance
(Mateo et al., 2019; Rahmani et al., 2020; Talamali et al., 2021).
Thus, the ideal for an evolutionary theory of collective animal
behaviour, as in all of science, is a loop of hypothesis, observation,
revision, resting on well-grounded theoretical predictions.
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