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Abstract. Quorum sensing is a key mechanism enabling coordinated
behaviour in populations of autonomous agents, and is extensively stud-
ied in biological systems spanning from bacteria populations to social
insects. In swarm robotics too, quorum sensing aroused much interest,
but remained mostly constrained to the implementation of collective de-
cisions. Here, we propose protocols to estimate the quorum level that
are suitable for resource-constrained robots, and evaluate the precision
and speed of the quorum assessment across a large spectrum of swarm
state conditions. Through systematic experimentation, we evaluate the
proposed protocols for different swarm densities and working area sizes.
Our findings shed light on the trade-off between computational require-
ments and expected performance, aiding in the selection of appropriate
quorum sensing protocols for future swarm robotics research.

1 Introduction

Quorum sensing (QS) is a widespread phenomenon in both biological and artifi-
cial systems, playing a pivotal role in enabling coordinated system behaviour [3,2].
It can be defined as a “consistent population-dependent modulation of discrete
modes of behaviour” [21], meaning that a population of agents can coordinately
switch to a different behaviour when some population-level feature (e.g., density)
surpasses a given threshold (i.e., a quorum). QS is largely studied in biology and
especially in bacteria [36,17], in which a density-dependent concentration thresh-
old of signalling molecules can trigger a behaviour change (e.g., bioluminescence
in Vibrio fischeri [13]). In social insects, QS has been studied mainly as a decen-
tralised mechanism necessary to implement a collective decision (e.g., migrating
to a new nest site [24,31,7]). Indeed, collective decision making requires two pro-
cesses: first, building consensus, so that a sufficient number of individuals in the
population selects the same alternative (possibly among many); second, decision
implementation, which requires that individuals change their behaviour accord-
ing to the selected alternative. In nest site selection, for instance, first a new nest
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location must be identified, and then the colony can relocate to the new nest.
To minimise colony splitting, a robust QS mechanism must be in place, enabling
to implement the decision only when sufficient support is available. This also
leads to a speed-accuracy trade-off, because a fast-and-frugal estimation of the
quorum can lead to frequent errors in the decision implementation [10].

In swarm robotics too, QS has been conceived as a mechanism for the im-
plementation of collective decisions [20,6,21,8,16]. Indeed, to orchestrate swarm-
level activities across multiple functional tasks, the robot swarm must be capa-
ble of collective decision making and task switching, whereby in face of multiple
alternatives the swarm selects the most profitable or urgent task and coordi-
nately executes it. Minimalist approaches for best-of-N decision problems have
been proposed in the past [35]. Recently, it has been shown that a hierarchy of
collective decisions can simplify best-of-N problems, improving both speed and
accuracy [18]. Such approaches can be generalised to coordinated task switching,
whereby the swarm is required to coordinately move from one task to another
maintaining coherence and prioritising the most relevant task or suitably dis-
tributing among many [15,1]. In both task switching and decision sequences, QS
strategies are fundamental to establish when the swarm is ready to move on.
This must be optimised for speed to avoid unnecessary delays and energy con-
sumption. Additionally, recovery mechanisms need to be developed for robots
that wrongly recognise the quorum or that engage in a different task, by means
of systematic coherence check within the swarm.

In this paper, we move beyond previous research on QS for robot swarms
[20,6,21] by studying the system dynamics in isolation from the collective decision-
making process and by comparing three alternative protocols in terms of their
computational and memory requirements. We make a theoretical analysis through
an urn model that informs the swarm robotics simulations. We test the ability
and speed of the robot swarm to detect a quorum for a wide range of quo-
rum levels. Moreover, we discuss how much QS is impacted by swarm density
and size of the working area, which contribute to determining the effectiveness
of the sampling strategy. Our results show that effective QS protocols can be
implemented on resource-constrained robotic platforms.

2 Background

As mentioned above, QS finds application in swarm robotics, particularly in as-
sociation with collective decision making, as a mechanism to determine when
one alternative gathered sufficient support. Over the years, a few approaches
have been developed to estimate the swarm state and react accordingly with
a system-level response. Bacteria-inspired QS did not find much application in
robotics as it requires that some chemical product is produced and diffused in
the environment, and its concentration measured [25]. Much as with pheromone
communication, dealing with chemicals imposes technical challenges difficult to
overcome [11], or that require some special infrastructure to be simulated effec-
tively [32,30]. Inspired by QS in social insects, approaches based on sampling the
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state of neighbouring individuals received more attention. Notably, two main ap-
proaches can be followed employing either anonymous or identity-aware interac-
tions, each offering distinct advantages and disadvantages in different scenarios.

Anonymous protocols are mostly inspired by studies performed in honeybees
and ants during nest site selection [31,24]. In these studies, individuals base QS
on the encounter rate with conspecifics, as the estimation takes place at the can-
didate site: the higher the encounter rate, the stronger the support for the site.
Models and algorithms replicate QS via encounter rates, either through a leaky
integrator [21] or by maintaining an anonymous buffer of messages [20]. These
approaches clearly minimise memory requirements and computational overhead,
and can be implemented with very simple logic.

In contrast, identity-aware protocols leverage unique identification mecha-
nisms to recognise each agent within the swarm. These protocols integrate in-
dividual identities alongside state information, enabling more precise decision
making at the cost of higher memory requirements and larger computational
and communication complexity, posing challenges in resource-constrained set-
tings. A class of approaches closely related to QS is decentralised node counting
in networks of autonomous agents [12,29], as QS can also be seen as the problem
of counting how many agents are in a given state. Closely related to approaches
inspired by social insects, population sampling methods allow obtaining esti-
mates of the population state [6,8,5]. In these studies, agents share their state
upon encounter, and each agent stores/updates other agents’ states to evaluate if
the quorum has been reached using a sufficiently large sample of the population.
Both majority and k-unanimity voting rules are tested [6], the former presenting
faster dynamics.

The choice between anonymous and identity-aware protocols hinges on the
specific requirements and constraints of the swarm robotics application at hand.
While anonymous protocols offer simplicity and efficiency in memory usage, they
may struggle to maintain robustness in scenarios necessitating fine-grained coor-
dination or prolonged interactions among a subset of agents. Conversely, identity-
aware protocols provide enhanced precision and adaptability but demand greater
computational resources and may introduce complexities in implementation and
maintenance. Thus, understanding the trade-offs between these approaches is es-
sential in designing effective QS protocols for swarm robotics applications, also
considering performance in terms of precision and speed.

3 Problem Description

We consider a QS problem in which a group of N agents must collectively recog-
nise if a given portion of the group agrees about an opinion. To focus on the QS
dynamics aside from the consensus-building process, we consider agents with two
possible states, committed and uncommitted. Agents are randomly initialised in
one or the other state, and never change it. As a consequence, the swarm has a
constant fraction of committed agents, hereafter referred to as the ground truth
G ∈ [0, 1]. We consider that the quorum is reached when a minimum fraction
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Q ∈ [0, 1] of the swarm recognises that the percentage of teammates in the com-
mitted state is larger than a given threshold τ ∈ [0, 1]. Ideally, one would expect
that Q = 1 ⇐⇒ G ≥ τ , and conversely Q = 0 ⇐⇒ G < τ .

As mentioned in Section 2, agents can estimate whether or not the quorum
is reached by sampling the state of other agents within the population either
anonymously or by being aware of the identity of the interacting individuals.
Anonymous protocols minimise assumptions about interactions among agents
and reduce the memory requirements, but can be less effective in case of mul-
tiple encounters among the same individuals because these individuals will be
double counted. This double-counting problem can be resolved through identity-
aware protocols, which however require that identity recognition is possible and
are more demanding in terms of memory. In swarm robotics, robots are often
assigned a unique identification number (ID), which can be communicated to
neighbours together with information about the agent’s state. Identity-aware
protocols can therefore be easily implemented, provided that the memory re-
quirements are considered. In the following, we first discuss theoretical implica-
tions related to choosing anonymous or identity-aware protocols, and then we
detail the minimal implementations we propose for robot swarms.

3.1 Urn Models of Quorum Sensing

We assume a well-mixed population, where the probability that two agents in-
teract is the same for any couple of agents. Hence, the sampling process carried
out by agents to estimate the quorum state can be easily modelled using simple
urn models. Despite their simplicity, urn models are often exploited to provide
guidance for the understanding of stochastic processes in complex systems such
as robotic swarms [14]. Urn models describe probabilistic events as extractions
of balls from an urn. In our case, balls represent agents and the ball’s colour
represents their state (i.e., committed or uncommitted). Therefore the proba-
bility of obtaining information from a neighbour agent can be modelled by the
extraction of a ball from an urn. Anonymous protocols can be represented by
urn sampling with replacement, because the same agent (ball) can be sampled
multiple times, therefore the ball is replaced in the urn after being sampled.
Instead, identity-aware protocols can be represented by urn sampling without
replacement as double-counting is prevented by keeping track of the agent iden-
tities. For both cases, we provide models to compute the probability of detecting
a quorum as a function of the number of samples n.
Urn sampling with replacement. Consider an urn containing N balls with
W white balls and B = N − W black balls (i.e., G = W

N ). The probability of
extracting a white ball is Pw = G and of extracting a black ball is Pb = 1−G.
Hence, the probability of having k white balls extracted with replacement in n
trials is

Pr(n, k) =

(
n

k

)
P k
wP

n−k
b , k ≤ n. (1)
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So, the probability of having at least τ percent (e.g., 80% in our experiments)
of the balls extracted within n trials to be white can be written as

P(n, τ) =

n∑
k=⌈nτ⌉

Pr(n, k), (2)

where ⌈.⌉ is the ceil operator. Note that here P(n, τ) does not depend on the
population size N , as a consequence of the replacement.
Urn sampling without replacement. Consider an urn containing N balls
with W white balls and B = N − W black balls (i.e., G = W

N ). If there is no
replacement, the probability of having k ≤ W white balls within n extractions
can be written as

Pn(n, k) =

(
W
k

)(
N−W
n−k

)(
N
n

) , k ≤ n. (3)

Here, the probability of having at least τ percent of the balls being white is

P(n, τ) =

n∑
k=⌈nτ⌉

Pn(n, k). (4)

3.2 Implementation of Quorum Sensing in Robot Swarms

We consider a swarm of N robots randomly moving in a square arena (side length
L). A total of ⌈GN⌉ robots are randomly chosen and initialised in the committed
state, the rest are set to the uncommitted state. Robots can communicate with
neighbours within a radius r, sharing their unique ID and a bit bc indicating their
state (bc = 1 for committed, bc = 0 for uncommitted). Messages are broadcast
every tc seconds, and upon reception they are stored and processed to evaluate
the existence of the quorum. Owing to communication, sampling of the swarm
state can be performed.

To estimate the quorum level, each robot maintains a buffer B of received
messages and, at each buffer update, computes the proportion of neighbours in
each state and compares it to the threshold τ . To have a large enough sample over
which to compute the qualified majority, we impose a minimum buffer dimension
Bm before considering the quorum assessment:

bq = |B| ≥ Bm ∧
∑
m∈B

bc(m) ≥ τ |B|. (5)

Here, bq is a bit representing the quorum detection state of the agent, and bc(m)
is the commitment bit stored in message m. Note that the quorum detection
state can transition to 0 if the conditions on the buffer B do not hold anymore.
We propose three different approaches over the same problem formulation to
implement both anonymous and identity-aware protocols.
Anonymous Protocol. To implement an anonymous protocol, the robot ID
contained in a received message m is ignored and only bc(m) is stored in B. The
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buffer B implements a FIFO method for memory management with fixed size
BM ≤ N , closely following the implementation in [20]. Hence, the maximum
memory requirement is BM bits. Recall that the commitment state of the same
robot can appear multiple times within the buffer, especially if robots remain
in mutual proximity for a sufficient time. This may bias the estimation of the
quorum level and ultimately the accuracy of the algorithm.
Identity-Aware Protocol with Message Broadcasting (ID+B). In this
case, a qualified majority is computed only with information coming from differ-
ent robots, similarly to what is proposed in [6]. The buffer B stores any received
message m in a list of tuples ⟨k(m), bc(m), t⟩, where k(m) is the robot ID, bc(m)
the corresponding commitment state, and t is a timeout for storing a message
drawn from an exponential distribution with average Tm. Through this timeout,
old messages are removed from the buffer, forcing the robot to make QS esti-
mates on fresh information. If a new message m′ is received from robot k(m′)
and there is already a tuple from the same robot in the buffer, then the new
message is discarded only if the status bit is unchanged, otherwise the old mes-
sage is replaced with the new one and a new timeout T ′

m is computed. This
approach allows mitigating the effects of repeated encounters among the same
robots, while keeping track of changes in the neighbour status. Overall, if we use
Bk bits to store the robots’ IDs and Bt bits for timeouts, this protocol requires at
most N(Bk+Bt+1) bits to store the message buffer. As we will see in Section 4,
the buffer size can be limited by reducing the average timeout Tm.
Identity-Aware Protocol with Message Re-broadcasting (ID+R). One
limitation of the above protocols is that messages are received only within the
communication range r. To address this limitation, we propose a simple rebroad-
casting protocol, which allows to diffuse information widely within the swarm
by forwarding the same message multiple times. Here, the buffer B stores any
received message m in a list of tuples ⟨k(m), bc(m), t, br⟩, where the additional
bit br indicates whether or not the information has been rebroadcast. The re-
broadcast approach implements a FIFO strategy: every time the robot can com-
municate (i.e., every tc seconds), it rebroadcasts the oldest message that has not
been rebroadcast yet and the corresponding bit is set in B. When there is no
message to rebroadcast, the robot shares its own state. Note that the choice of a
FIFO may delay the broadcast of one agent’s state, as the latter is shared only
when the FIFO is empty. However, preliminary tests without a FIFO revealed
that such a delay has a negligible effect in practice for the studied settings (data
not shown). Concerning memory requirements, if we do not consider a rebroad-
casting FIFO buffer (which can be implemented within B at the expense of some
additional computation), this protocol requires at most N(Bk +Bt + 2) bits.

3.3 Implementation with Kilobots

In this study, QS has been tested with Kilobot robots [27,28] simulated through
ARGoS [23,22]. To support the experimentation, we use the ARK system that
significantly enhances the experimentation possibilities with Kilobots [26,9]. The
motion pattern implemented with the Kilobots is a random waypoint model [4],
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which corresponds to a directed movement towards a position randomly cho-
sen within the working area. This motion pattern keeps the swarm constrained
within the predefined working area without the need for collision avoidance—
which cannot be performed by Kilobots—and can be easily implemented em-
ploying ARK as a global positioning system [33].

Kilobots communicate at a maximum rate of about 2Hz, that is, tc = 0.5 s.
Messages can be effectively received within a radius of r = 0.1m. We have im-
plemented the buffer B as a doubly linked list to optimise traversal, insertion
and deletion of messages. A static vector of indices is also used to quickly check
if messages are already present in the buffer, and access them. These structures
come with a negligible overhead in memory requirements and can be easily im-
plemented on the Kilobots (see the open-source code [19]).

4 Results

Starting from the probabilistic urn models, we first show how the probability
of sampling a qualified majority of white balls changes with and without re-
placement, mirroring the usage of anonymous and identity-aware protocols in a
well-mixed population. To this end, we compute the maximum threshold τM ≤ G
that ensures a high probability—higher or equal than 80%—of detecting a quo-
rum. In other words, we determine how precise the threshold τ should be (i.e.,
how close it should be to the ground truth G) to detect the quorum with high
probability P(n, τ) ≥ 0.8. Figure 1 shows the value of τM normalised on G, for
varying sample size n ∈ [1, 25] and ground truth G = i/N, i ∈ {⌈N/2⌉, . . . , N}.
When N = 25, the urn sampling without replacement (NR25) predicts higher
precision in detecting the quorum than the case with replacement (R25). On the
other hand, when the population size is significantly larger than the number of
samples (N = 100 in Figure 1), differences fade away, as it is possible to no-

1 5 10 15 20 25
n

1

0.92

0.84

0.76

0.68

0.6

0.52
1 5 10 15 20 25

n
1 5 10 15 20 25

n
0.0

0.2

0.4

0.6

0.8

1.0R25 NR25 NR100

G

Fig. 1. Prediction of the urn models for sampling with and without replacement. The
heatmap shows—for each pair n,G—the normalised maximum threshold τM/G that
ensures a probability P(n, τM ) ≥ 0.8. Left: results with replacement and N = 25 balls
(R25). Centre: results without replacement and N = 25 balls (NR25). Right: results
without replacement and N = 100 balls (NR100).
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tice comparing NR100 with R25.5 Indeed, if the well-mixed assumption holds,
an anonymous protocol should be as good as the identity-aware protocol when
N ≫ n. As an additional result, we can determine what is the minimum sam-
pling size Bm to obtain a good precision. Looking at Figure 1, we can see that
for n < 5 the precision is not very good for all sampling strategies, but for larger
values of n the value of τM need not be too distant from G. We therefore fix
Bm = 5 for all swarm robotics experiments, considering that this is a minimum
requirement and that the size of the buffer B can grow larger than Bm.

Swarm robotics experiments are performed in simulation, testing different
swarm densities and arena sizes. Specifically, we consider a low density case
(LD25) with N = 25 robots in a large square arena (L = 1m), a high den-
sity case (HD25) with N = 25 robots in a small square arena (L = 0.5m),
and a high density case (HD100) with N = 100 robots in a large square arena
(L = 1m). To give an idea of the consequences of the robot density, consider a
random geometric network induced by the robot interactions with average degree
⟨k⟩ = πNr2/L2 [34]. Hence, for LD25 we have less than one neighbour per robot
on average (⟨k⟩ = π/4), while for HD25 and HD100 we have more than three
neighbours on average (⟨k⟩ = π), and a value closer to the percolation thresh-
old ⟨kc⟩ ≈ 4.51. We study the anonymous and the two identity-aware protocols
(ID+B and ID+R) varying the memory requirements, which are determined by
the maximum buffer length BM for the former and by the average timeout Tm

for the latter two. Figure 2 shows how different settings influence the buffer
length. Given that the anonymous protocol has a fixed buffer length BM , we
plot the number M of unique messages in B, hence excluding double counting.
It is possible to notice that the anonymous protocol accumulates a lower amount
of information about the swarm than the identity-aware protocols, mainly due
to double counting. Additionally, the re-broadcasting protocol gives a significant
speed advantage, converging to the stationary value earlier than what simple
broadcasting can achieve. High-density conditions ensure good interaction rates
among robots and efficient sampling. Low-density conditions suffer from ineffi-
cient communication, and the difference between anonymous and identity-aware
protocols is reduced.

To evaluate the quality of the QS protocols, we compute the fraction Q(t) of
robots that at time t recognise the quorum given a ground truth G = i/N, i ∈
{⌈N/2⌉, . . . , N} and the threshold τ ∈ [0.5, 1] in all the mentioned experimental
conditions. We then compute the average quorum detection Q̂(G, τ) as the aver-
age value of Q(t) over T = 900 s and 100 independent runs. Figure 3 shows the
isolines for Q̂ = 0.8 and Q̂ = 0.2, which represent boundaries of regions in which
the swarm consistently recognises a quorum (Q̂ ≥ 0.8) or reject it (Q̂ < 0.2).
As mentioned in Section 3, ideally the region R between these isolines should
be minimised, as this region corresponds to an undecided state, possibly leading
to QS errors. It is possible to notice that in all settings the anonymous protocol
leads to a wider region R. Among the two identity-aware protocols, ID+R has
a slight advantage consistently across experimental setups. When increasing the

5 Recall that the urn model with replacement does not depend on system size N .
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Fig. 2. Evolution over time of the average number M of unique messages in the buffer
normalised over the maximum allowable size (i.e., N − 1). From top to bottom, the
density-size scenario is changed, respectively LD25, HD25 and HD100. From left to
right, the average timeout Tm and the maximum buffer length BM values increase.
We set Bm ∈ {10, 13, 24} for N = 25, and Bm ∈ {10, 32, 99} for N = 100. Data are
averaged over all robots across R = 100 simulation runs.

timeout Tm and maximum buffer size BM , the region R always gets smaller as
the qualified majority is evaluated on a larger sample. Similarly, moving from
low to high densities and larger numbers of robots increases the sampling size
and in turn the quality of the estimation.

Finally, we evaluate how fast the different protocols can lead to a reliable
recognition of the quorum. To this end, for each value of τ ∈ [0.5, 1], we consider
the smallest value Ĝ that results in a reliable estimation:

Ĝ = argmin
G

(
Q̂(G, τ) ≥ 0.8

)
, G = i/N, i ∈ {⌈N/2⌉, . . . , N}. (6)

For such values of τ and Ĝ, we record the time at which Q(t) exceeds the 0.8
threshold. Figure 4 shows the median quorum recognition time Tc across 100
runs. It is possible to notice that the anonymous protocol is rather fast, but as
we have seen in Figure 3 it trades off precision for speed. Conversely, the identity-
aware protocols present similar behaviour with low density. However, ID+R is
much faster than the other approaches with high density, because rebroadcasting
leads to faster diffusion of information and an improved sampling (as also seen
with the growth rate of the message buffer B in Figure 2).
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Fig. 3. Isolines of the average quorum detection for Q̂ = 0.8 (solid lines) and Q̂ = 0.2
(dashed lines). The isolines are computed through linear interpolation between the grid
points used for computing the average quorum detection for all values of G and τ .

5 Conclusions and Future Work

In this paper, we explored minimalist approaches to quorum sensing (QS) based
on anonymous or identity-aware sampling protocols. Our results demonstrate
that anonymous protocols suffer from the double counting problem, which can be
mitigated only if the robot swarm population is sufficiently well-mixed. However,
robotics settings typically have strong spatial and communication correlations,
hence the system is often far from being well-mixed. Identity-aware approaches
are effective in both low and high densities, and message rebroadcasting can
boost the QS process both in accuracy and speed. We hypothesise that, whenever
the density is sufficiently high to enable information sharing, ID+R can be an
effective solution to QS in particularly challenging scenarios characterised by
large spatial heterogeneities in the robot distribution. Finally, ID+R should also
adapt well to dynamic conditions where the ground truth changes over time,
owing to the speed of diffusing new information. These conditions will also be
the subject of future investigation.
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Fig. 4. Median times for the swarm to reliably detect the quorum across 100 different
runs. We can interpret the oscillations as an artefact determined by the way in which
we select Ĝ, which results in more or less close values of P (Ĝ, τ) to the 0.8 threshold:
the closer it is, the slower is the quorum detection process.

The systematic experimentation we have conducted should provide valuable
information to swarm robotics practitioners who need to define how to estimate
the state of the swarm in a fast and reliable way. Further characterisation of the
mechanisms presented here will improve the ability to make informed choices
about the QS protocol, especially in relation to dynamic settings, different mo-
tion patterns and varying task requirements. For instance, when robot swarms
perform specific tasks (e.g., foraging), their interaction topology stops approxi-
mating a well-mixed system, and the performance of the different QS protocols
can be affected. Finally, recovery from errors should be explicitly accounted
for. While the presented protocols can correct from errors as long as additional
samples are collected, the speed and reliability of error recovery needs to be
explicitly assessed and possibly adaptive mechanisms should be put in place to
enable quick reaction both locally and globally.
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