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We propose cognitive design patterns (CDPs) as a general
methodology to design distributed artificial systems capable
of cognitive processing. CDPs are reusable solutions that
leverage the current understanding of cognitive processing
in natural distributed systems, and that put this knowledge
in use for the design of artificial ones [2]. In this paper, we
derive a CDP for collective decision making inspired by the
nest-site selection behaviour of honeybee swarms [1]. Dur-
ing this process, honeybees leave the swarm in search of a
new nest site. A bee that discovers a potential nest gets
committed to it and returns to the swarm to recruit other
uncommitted scouts through the waggle dance. Bees com-
mitted to different alternatives deliver to each-other stop
signals, which make them return to a uncommitted state.
Additionally, scouts have a certain probability of sponta-
neously abandoning commitment. This collective process is
based on peer-to-peer interactions among bees, and leads
to a consensus decision for the best available alternative.
Additionally, thanks to the cross-inhibition mechanism im-
plemented through stop signals, the colony is able to break
decision deadlocks in case of same-quality alternatives, and
to randomly selects any of the two.

An analytical model of the nest-site selection process in
a binary-choice scenario has been developed and confronted
with empirical results [1]. The model is a ODE system that
describes the dynamics of the fraction Ψi = Ni/N of individ-
uals belonging to population i ∈ {U,A,B}, where U is the
population of uncommitted scouts, and A andB are the pop-
ulations of bees committed to option A or B. The model as-
sumes that agents switch between populations through four
types of transitions with constant rate: discovery (γi), aban-
donment (αi), recruitment (ρi) and cross-inhibition (σi):

{

Ψ̇A = ΨU (γA + ρAΨA)−ΨA(αA + σBΨB)

Ψ̇B = ΨU (γB + ρBΨB)−ΨB(αB + σAΨA)
(1)

where ΨU = 1−ΨA −ΨB .
It is worth noting that this model does not require any

explicit comparison of the alternatives’ quality by the sin-
gle individuals. The quality value of the two alternatives is
instead encoded in the transition rates: different-quality al-
ternatives correspond to biased transition rates, while same-
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quality alternatives to unbiased ones. An extensive analysis
of the model showed that cross-inhibition rates σi determine
a phase transition of the system that allows to break the
deadlock in problems with equal quality alternatives. For
low rates of cross-inhibition, the system remains deadlocked
at indecision with equal number of individuals committed to
either alternative (ΨA = ΨB), while for cross-inhibition val-
ues greater than the critical value σ∗ = 4αγρ

(ρ−α)2
the system

converges to a collective choice [1]. Therefore, through a
suitable parameterisation it is possible to control the global
system behaviour and the resulting collective dynamics.

The mechanistic description above clarifies the working
regimes and suggests how the transition rates should be cho-
sen to obtain the desired macroscopic behaviour. However,
to guide the implementation of a distributed multi-agent
system it is also necessary to define the main features of
(i) the individual agent behaviour, (ii) the agent-to-agent in-
teractions (e.g., information exchange and integration), and
(iii) spatial and topological factors (e.g., connection topol-
ogy among agents). These features determine the CDP, and
incorporate the knowledge gained from the theoretical mod-
els to provide the minimal requirements for obtaining the
desired system behaviour.

Following this line, we define the collective decision mak-
ing CDP, and we demonstrate its application through a sim-
ple, spatial multi-agent scenario. The case study is the col-
lective choice of the shortest path between two alternatives
in a 1D space: agents move on a circle and need to col-
lectively select and exploit the shortest path between two
target areas. Two alternatives are possible: the upper and
the lower path, respectively labelled as A and B. The angle
θ between the target areas defines the decision problem: the
best alternative is A for θ < π, B for θ > π and any of the
two for θ = π. To identify and exploit a path, agents need to
navigate back and forth between target areas. We assume
that agents have local sensing and communication, move
at constant speed, track the angular distance of the areas
through dead reckoning and cumulate error in the position
estimates. All agents start uncommitted with no knowledge
about the target areas. Starting from the theoretical model,
we have developed the CDP that we implement as follow:

(i) Discovery : an agent explores the environment through
correlated random walk, and gets committed to a path
as soon as it stores the position of the two target areas.
In this way, we obtain γi ∝ 1/θ because shorter paths
are easier to discover through random walk;

(ii) Abandonment : an agent abandons its commitment and
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Figure 1: (a)-(b) Comparison between macroscopic dynamics (trajectories, stable points as triangles, and
saddle points as rhombus) and 300 multi-agent simulations (final repartition of N = 400 agents between the
two populations, shown as red empty dots) for the symmetric case θ = π (main) and the asymmetric case
θ = 5π/4 (insets). (c) Convergence time for symmetric and asymmetric cases as a function of P , with decision
threshold at Ψi = 0.7 and tmax = 2000s. (d) Transition rates as a function of P for the symmetric case.

resumes exploration if it fails to attain a target area due
to errors in the position estimates. Here, we obtain
αi ∝ θ because lower abandonment rates result from
smaller cumulative error on shorter paths.

(iii) Recruitment : an uncommitted agent that interacts
with an agent committed to alternative i gets recruited
with fixed probability Pρ.

(iv) Cross-inhibition: an agent committed to alternative i
that interacts with an agent committed to alternative
j 6= i becomes uncommitted with fixed probability Pσ:
it erases the stored locations and resumes exploration.

(v) Well-mix : to provide equal probability of interaction
with agents exploiting different paths, interactions are
possible only when agents are within the same target
area. Each agent has a maximum of one interaction
per time unit.

Note that we have not specified a direct way to control
the transition rates for discovery and abandonment, while
recruitment and cross-inhibition are determined by the con-
trol probabilities Pρ and Pσ. We choose fixed probabilities
independently of the possible differences in the path lengths.
As discussed above, this should be sufficient to produce a col-
lective choice, provided that the discovery rates are biased
toward the best option. To simplify the system analysis, we
fix Pρ = Pσ = P which we refer to as the interaction prob-
ability. We study the system behaviour varying P and θ,
while the other parameters are kept constant.

To verify the correctness of the design pattern and to
study how the collective behaviour changes as a function
of P and θ, we check the adherence of the multi-agent sys-
tem with the macroscopic model (Figure 1(a)-(b)). To this
purpose, we statistically estimate the transition rates di-
rectly from the simulations through survival analysis. The
agreement between multi-agent system and macroscopic dy-
namics is remarkable: the predictions of the model with es-
timated parameters perfectly match the final agent distribu-
tion. In the symmetric case with θ = π, the alternatives have
same quality and this—potentially—corresponds to a deci-
sion deadlock. This is actually the case for very low values
of the interaction probability (e.g., P = 0.01 shown in the
main plot of Figure 1(a)). For increasing interaction prob-
ability, we observe a phase transition which lets the system

break the symmetry: two stable solutions appear indicating
a collective choice for either A or B (Figure 1(b)-main).
In case θ = 5π/4, the decision problem should lead to the

systematic choice of the alternative B. We note that for low
values of the interaction probability P there exists a single
stable fixed point for ΨB ≈ 1 (inset of Figure 1(a)); while,
for higher values of P , the system undergoes a bifurcation,
and a second stable fixed point appears for the inferior op-
tion (inset of Figure 1(b)). The bifurcation appears when
cross-inhibition is sufficiently strong compared to the other
transition rates. This may lead to errors in the decision mak-
ing if the system happens to be in the basin of attraction of
the inferior choice. Conversely, larger cross-inhibition rates
lead to increased decision speed (see Figure 1(c)).

Figure 1(d) shows how the estimated transition rates vary
with respect to P for the symmetric case. While discov-
ery and abandonment remain roughly constant, both ρ and
σ increase quasi-linearly with P , indicating that a higher
probability of interaction among agents directly translates
in increased recruitment and cross-inhibition rates. Note
that the estimated cross-inhibition rate is initially below
the critical value (σ < σ∗) for small interaction probabil-
ities (P < 0.07), which are actually the values at which
the multi-agent simulations remain deadlocked at indecision.
For larger P , cross-inhibition is sufficiently high and the col-
lective decision is efficiently performed.
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