
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2017 1

ARK: Augmented Reality for Kilobots
Andreagiovanni Reina@, Alex J. Cope§, Eleftherios Nikolaidis‡, James A.R. Marshall@ and Chelsea Sabo§

Abstract—Working with large swarms of robots has challenges
in calibration, sensing, tracking, and control due to the as-
sociated scalability and time requirements. Kilobots solve this
through their ease of maintenance and programming, and are
widely used in several research laboratories worldwide where
their low cost enables large-scale swarms studies. However, the
small, inexpensive nature of the Kilobots limits their range of
capabilities as they are only equipped with a single sensor. In
some studies, this limitation can be a source of motivation and
inspiration, while in others it is an impediment. As such, we
designed, implemented, and tested a novel system to communicate
personalised location-and-state-based information to each robot,
and receive information on each robots’ state. In this way,
the Kilobots can sense additional information from a virtual
environment in real-time; for example, a value on a gradient,
a direction towards a reference point or a pheromone trail.
The Augmented Reality for Kilobots (ARK) system implements
this in flexible base control software which allows users to
define varying virtual environments within a single experiment
using integrated overhead tracking and control. We showcase
the different functionalities of the system through three demos
involving hundreds of Kilobots. The ARK provides Kilobots
with additional and unique capabilities through an open-source
tool which can be implemented with inexpensive, off-the-shelf
hardware.

Index Terms—Swarms, Multi-Robot Systems, Virtual Reality
and Interfaces

I. INTRODUCTION

S INCE their development, Kilobot robots [1] have been
employed in numerous swarm robotics studies, e.g., [2],

[3], [4], [5], [6], [7], [8], and are the main robotic platform of
various research projects, such as DiODe [9], Swarm-Organ
[10], E-Swarm [11], and FloraRobotica [12]. The success of
this platform is ascribed to its low cost, which allows users
to perform experiments with a large number of robots at a
reasonable price compared to alternative platforms, and its
scaleable charging and programming features. However due
to their simplicity, Kilobots are equipped with a minimal set
of sensors and actuators which significantly limits the range
of actions they can perform.

Manuscript received: February, 15, 2017; Accepted April, 10, 2017. This
paper was recommended for publication by N. Y. Chong upon evaluation of
the Associate Editor and Reviewers’ comments. This work was funded by
the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement number 647704).

This paper has a supplementary downloadable video (41 MB) available at
http://ieeexplore.ieee.org, provided by the authors. The supplementary video
showcases the ARK’s functionalities through three demos.

The authors are with the Department of Computer Science, Uni-
versity of Sheffield, S1 4DP, UK (@email: a.reina@sheffield.ac.uk;
james.marshall@sheffield.ac.uk).

§Contributed equally to this work.
‡E. Nikolaidis is also with the Alexander Technological Educational Insti-

tute of Thessaloniki, Greece.

In this paper, we present Augmented Reality for Kilobots
(ARK), a system that extends the Kilobot capabilities by
allowing the robot to operate in augmented reality. This system
allows Kilobots access to customised information based on
their location and state. They can, in turn, modify their
virtual environment which can then be sensed by other robots.
Through the proposed system, Kilobots can be employed
in experiments that utilise a set of sensors/actuators richer
than those the standard robot has (e.g., see Demo C in
Section IV-C). Additionally, ARK makes it considerably easier
and reduces the time required to operate large swarms by
automating several necessary steps in setting up an experiment;
e.g. positioning, motor calibration, and unique ID assign-
ment (showcased through Demos A and B in Section IV).
Finally, ARK provides functionalities to log and record ex-
perimental data for subsequent analysis. ARK is composed
of three components: (i) a overhead camera tracking system
that provides real-time data on robot location and state, (ii)
a modified overhead emitter which broadcasts infrared (IR)
signals to communicate to the Kilobots, and (iii) a base
control station to coordinate the system and simulate the
virtual environments. The system architecture is described in
more detail in Section III. While an alternative technology for
Kilobot augmented reality has been recently proposed [13],
the ARK system differentiates itself by offering additional
functionalities at a substantially lower cost which have been
demonstrated in scaled robotic experiments (discussed further
in Section II).

The functionalities of ARK are showcased through three
demos presented in Section IV. In Demos A and B, we
show the possibility of employing the system for automatic
unique ID assignment and automatic positioning of robots at
the beginning of an experiment. This is needed for automatic
calibration—a function (enabled with ARK, but not included
in this paper) that is highly desirable for experiments involv-
ing many, imprecise robotic platforms. These operations are
typically tedious and time consuming when done manually.
Additionally, automating the operation gives more accurate
control of the robots’ start positions and removes undesired
biases in comparative experiments. In Demo C, we show a
simple foraging scenario where 50 robots collect material from
a source location and deposit it at a destination. Through
this demo, we show that robots can perceive (and navigate) a
virtual gradient, can modify the virtual environment by moving
material from one location to another, and can autonomously
decide when to change the virtual environment that they sense
(either the source or the destination).



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2017

II. RELATED WORK

In various studies, the limited capabilities of the Kilobot
required users to complement their experiments with the
virtualisation of environmental features. This has been done
through the use of additional, dedicated robots (not involved
in the collective behaviour) that broadcasted constant messages
about a target area [3], [5], [8] or a reference coordinate
system [2]. This strategy needs to be tailored for each ex-
perimental setup, has its own limitations, and may not always
be a viable solution.

As such, a more generic solution has been recently proposed
in the form of the Kilogrid [13] which is an electronic
device that is placed under a glass surface on which the
Kilobots move. The Kilogrid, through the glass, can receive
IR messages from the robots and send localised information
to them. Similar to ARK, the Kilogrid allows robots to operate
in augmented reality and can be used to collect experimental
data (e.g. robot locations). Unfortunately, the Kilogrid is costly
and time-consuming to reconstruct as it is made from bespoke
components. Kilogrid is composed of cell modules with an
estimated cost of one Kilobot (which has a market price
of ∼£85). For a large-scale arena (2×2 m2 in size), 400
modules are necessary which would cost tens of thousands of
pounds. Since the main characteristic of the Kilobots is their
low cost, we present a system in agreement with this idea.
Further differences consist in the communication frequency,
which in the case of Kilogrid is higher, and in the use of
discrete vs continuous space. While Kilogrid operates on
discrete cell modules of 5× 5 cm2, the proposed ARK system
tracks robots in a continuous space. This can be beneficial for
precision tasks, such as motor calibration or robot placement
(see Demo B in Section IV-B).

Other works have proposed systems for augmented reality
for robots that present a structure very similar to ARK [14],
[15], [16], [17], [18], [19], [20]. In all these works, the robots’
locations are tracked through overhead cameras connected to
a base control station which then delivers virtual environment
information to the robots. In most works, the system is de-
signed for a specific use case (rather than as a general purpose
tool); for example, to generate virtual pheromone trails that are
either projected on the ground through an overhead projector
[14], [16] or displayed on an LCD screen which acts as
the robots’ ground [21]. Alternatively in [17], [19], robots
can sense any type of virtual environment. However, the
robots used in these studies are equipped with unique markers
for recognition and wireless modules for direct individual
communication. Unfortunately, unique markers may hide the
Kilobots’ LED and need to be very small and dense (due to the
number and size of the robots) which hinders real-time image
processing. Additionally, Kilobots do not allow for directed
communication, and so they rely only on broadcast messages.

III. ARCHITECTURE

As described, the ARK is comprised of three main com-
ponents which allow for a flexible and scalable augmented
reality environment for Kilobots: (A) a Base Control Software

Fig. 1. ARK arena hardware architecture.

(BCS), (B) communication mainly through a modified Over-
head Controller (OHC), and (C) tracking via several overhead
cameras. This complete system allows for the control of vari-
ous Kilobot swarm sizes for both centralised and decentralised
experiments. The BCS provides an open-source tool1 by which
to manage and edit all components of the system. This system
architecture is shown in Figure 1.

While the BCS is comprised mainly of software which can
be implemented on most machines with a NVIDIA GPU, the
communication and tracking require off-the-shelf, inexpensive
hardware. These hardware decisions are described in further
detail here along with the different stages of the processing
pathway in BCS for each component.

A. Base Control Software Structure

The BCS provides a way to organise and administer the
tracking, communication, virtual environments, and Kilobots
themselves. Firstly, the software must obtain camera images
from the four cameras covering the Kilobot arena. The system
needs to correct for distortion in the images and stitch them to-
gether to form a single image of the entire arena. Secondly, the
software must allow the Kilobots to be individually identified

1The source code is open-source and available on GitHub at
https://github.com/DiODeProject/KilobotArena and the full documentation
can be found at http://diode.group.shef.ac.uk/kilobots/index.php/ARK

Fig. 2. BCS overview of class structure.



REINA et al.: ARK: AUGMENTED REALITY FOR KILOBOTS 3

Fig. 3. BCS life cycle of an experiment.

and tracked, including both their position and LED colour.
Thirdly, the software must allow the user to address unique
messages to each Kilobot based on their individual state
(position, orientation and LED colour), as well as broadcast
identical messages to all Kilobots. Fourthly, the BCS must
present a Graphical User Interface (GUI) to provide users a
means to configure the system and gain feedback on progress
of experiments. Finally, the BCS must execute sufficiently fast
to allow for real-time operation. An overview of the BCS
codebase can be seen in Figure 2 which describes the class
structure of an experiment.

Two main design decisions allow real-time performance: the
use of threading to allow execution across multiple CPU cores
and the use of the OpenCV CUDA GPU libraries [22], [23] to
perform the image processing for stitching, tracking, and LED
colour identification. The GUI is created using the Qt Library
Framework.

Given that the BCS supervises all the main components of
the system, it is responsible for constructing and managing
experiments and their virtual environments and sensors. Be-
cause Kilobots are inexpensive, simplistic robots, they are only
equipped with a single sensor capable of detecting ambient
light. Enabling virtual environments, and therefore virtual sen-
sors, opens up a wide-range of feasible experiments that were
not previously possible by only using Kilobot hardware. For
example, the virtual sensor could act as a sort of positioning
system, olfactory system capable of picking up pheromones,
proximity detector, magnometer, and more. The ARK enables
a single high-resolution virtual sensor to be implemented or
multiple lower-resolution sensors. The choice is dictated by
the limited number of bits available in each message (see
Section III-B for further details).
ARK runs experiments in a separate thread to re-

solve issues with timing and synchronisation which arise
when running real-time experiments alongside tracking
and control. To facilitate simple switching of experiments,
the BCS loads in experiments as external libraries (users
are provided a template library that can be modified). Ex-

periments are subclassed from kilobotExperiment where the
lifecycle of an experiment is shown in Figure 3. In addition
to the experiment, users can also implement a set of en-
vironments (created by subclassing kilobotEnvironment) for
each experiment. Different environments allow Kilobots to
respond to different virtual sensors, and Kilobots can be
switched between environments throughout an experimental
run as shown in Demo C. Full instructions on implementing
experiments and environments can be found on our website at
http://diode.group.shef.ac.uk/kilobots/index.php/ARK.

To allow experiments to run as close to real-time as possible,
they are instantiated in a separate thread called userThread. As
such, the interaction between the main thread and userThread
is undertaken using Qt signals and slots as these can be
attached in a thread safe manner. The experiment requests the
locations of the Kilobots using a signal, and then each Kilobot
signals back to the experiment and its environment with a copy
of itself. By using a copy of the Kilobot class, the code is
rendered thread-safe and the user need not worry about such
complex issues. In addition, the experiment provides callbacks
to set itself up and to pass back a GUI panel. This is integrated
into the main GUI window and allows interactive controls to
be defined by the user. Figure 4 shows the GUI interface and
an example of the user GUI panel.
ARK automates time-consuming and mundane tasks, e.g.

assigning IDs, required to operate swarms of Kilobots.
Prior to tracking the Kilobots, they must first be located and
then assigned IDs (either a new, unique ID or a recovered,
previously assigned ID). After having located the Kilobots,
we must identify their ID numbers. Recovering previous IDs
is performed by sending a broadcast packet to all Kilobots
containing a single ID as the payload. The Kilobot assigned
that ID sets its LED colour to blue, and all other Kilobots set
their LEDs to red. The tracker can then identify the correct
Kilobot and note its ID before trying the next one. Once all
IDs are identified, the process finishes. The identification code
can be added to all Kilobot programs to avoid the need to load
a separate program for identification and is designated using a



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2017

Fig. 4. BCS GUI interface. The cameras’ image shows a frame of the Demos B in which ARK guides 50 robots to the desired target positions.

specific packet number type (here, we use 120). Assigning IDs
requires a more complex procedure, and a specific program
must be loaded onto the Kilobots to accomplish this. The
ID assignment procedure is implemented as an experiment
which is compiled into the main BCS program to simplify the
system. The procedure is described in details in Demo A in
Section IV-A.

B. Communication

Communication from the BCS to the Kilobots and from the
Kilobots amongst themselves is done through Infrared (IR)
signals. Kilobots are run on a smooth, very flat table which
is glossy to help IR signals reflect off the surface and reach
the robot light sensor. In a typical setup, the commercially-
available OHCs2 are mounted about 1 metre above the table.
This results in roughly a one metre diameter region below the
OHC where the signal can reach the robots. Unfortunately,
the limitations of the IR LEDs on the OHC prevent the use of
this system over larger areas and swarms. Further, the glossy
surface and ambient room lighting can create shadows and
other artefacts which degrade communication. This can also
vary from point-to-point across an arena with a large surface
area.
ARK presents a controller design that overcomes commu-

nication challenges under environmental uncertainty and
limited coverage. The ARK OHC was designed to provide
complete communication coverage of the arena despite its
large size and the uncertainties in the environment. This was
mainly accomplished through careful selection of IR LEDs
for a re-design of a system-wide OHC and through the use
of additional IR lighting [24]. The ARK OHC was designed
using an Arduino pro mini, MOSFET drivers as switches, IR
LEDs, and various resistors. The Arduino controls multiple
(up to 6) mini-OHCs which are distributed evenly around the

2http://www.k-team.com/mobile-robotics-products/kilobot

ARK arena. The mini-OHCs are powered by an external 12 V
source that is capable of providing the required amperage.
The Arduino sends the ON/OFF signal which is aided by the
MOSFET drivers to ensure fast switching and high power to
the LEDs. The same code3 developed by Alex Cornejo for
the OHCs can be used with the ARK OHC with only a slight
modification. That is, the signal needs to be sent to the first
6 bits of PORTB on the Arduino rather than just the 2nd.

Through careful testing across various surrounding lighting
conditions, surface materials, and LED parameters (wave-
length, half-angle, and radiant intensity), an optimal LED was
selected to use in the ARK OHC [24]. The TSAL6200 IR LED
was chosen due to its performance over large distances and
environmental uncertainties. The additional IR lighting source
also utilizes these same IR LEDs but with a 33 Ohm resistor.
The extra lighting further addresses the challenges of shadows
and communication uncertainties by providing another light
source directed at the arena. This allows communication even
when there is no other light source in the surrounding area
(e.g. the room could be pitch black) which would previously
never have been possible since Kilobots IR sensors require a
minimum background IR illumination for effective communi-
cation.
ARK BCS bundles messages and introduces logic that

solves issues with sending messages to a large number of
robots. The final stage in processing is to send information
to the Kilobots. This is done by constructing packets that
are sent to the OHC. Broadcast packets contain no Kilobot
ID and therefore, are acted on by all Kilobots. A range of
Kilobot packet types is allowed for broadcast packets (types
1 to 119) where numbers greater than 119 are reserved for
system messages and 0 is reserved for signal packets. Signal
packets are constructed to pass information to Kilobots with
specific IDs. As signal packets are likely to be sent for a
large number of Kilobots and there is a minimum duration

3https://github.com/acornejo/kilolib



REINA et al.: ARK: AUGMENTED REALITY FOR KILOBOTS 5

that a packet must be sent for to ensure reliable transmission,
it is necessary to bundle messages so they contain information
for more than one Kilobot. As a Kilobot message contains
72bits of payload, three different Kilobots can each be sent
24bits of data in one message. These 24bits are broken down
into 10bits for an ID (0→1023), four bits for a type (0→15)
and 10bits for a payload (0→1023). Signal messages are
constructed by delaying transmission of messages for 100 ms,
and then collating all queued messages into groups of three
and constructing signal packets which are then queued for
transmission to the OHC at 50 ms intervals. This means that
150 Kilobots can be signalled once each in 2.5 s. During this
time, a robot can move a maximum of ∼3 cm so this is suitable
frequency given the slow dynamics. Even still, this limit is
only hit if all robots need to receive constant updates. The
communication frequency could be increased if robots only
need conditional updates (e.g. conditional on location or state).

C. Tracking

Tracking of the Kilobot swarms is done through 4 overhead
cameras which feed back to the BCS for processing. The
number of cameras were chosen as the minimum which
achieve coverage of a large arena (e.g. 2.2×2.2 m2) when
mounted at a specific height above the surface (here, we
mounted them at 160 cm high). More cameras can be used
with modifications to the ARK software. In the ARK system,
we use e-CAM51 USB cameras [25] which are 71 × 13mm
in size, have a maximum 2592× 1944 image resolution, and
can achieve a maximum of 30 frames per second. However,
any camera with comparable resolution and frame-rate can
be used as long as the base station has the appropriate ports.
Finding the Kilobots is performed using OpenCV [22], and the
locations of the found Kilobots are used to instantiate Kilobot
class instances.
ARK BCS parallelises processing of camera information

for efficient tracking of large robotic swarms. Image
acquisition from each of the four cameras covering the arena
is handled in a separate worker thread. These threads use
individual OpenCV CUDA streams to warp the images and
resize them in preparation for stitching. This allows for concur-
rent execution (dependent on GPU support). The warping uses
parameters determined by a separate program which performs
automated calibration on the four camera images to transform
them into a single view using the OpenCV panorama stitching
module [22]. The final images are placed in a two-element
ring buffer which is synchronised to the main stitching thread
using QSemaphores. This arrangement allows the latency of
acquiring images from the cameras to be hidden. Although,
it must be noted that the Linux video backend is not thread-
safe and only one camera can be addressed at a time. This
contention is managed using a single QMutex across the
threads.

The images from the camera threads are collated in the
main thread and stitched together using memory copying on
the GPU. Tracking can then be performed on the final full
arena image. Due to the modular nature of the code, a custom
tracking algorithm can easily be implemented by modifying

the trackKilobots() method of the kilobotTracker class.
However, we provide a simple and performant reference
implementation using the Hough Circles algorithm (CUDA
implementation) in OpenCV to locate the Kilobots. Following
localization of the Kilobots, the distances between Kilobot
locations can be calculated on the GPU. Then, the minimum
distance for each Kilobot is found and their previous location
is updated on the CPU.

IV. DEMOS

The functionality of the ARK system is showcased through
three demo experiments. For all three Demos, the code for
the Kilobot controller and the experiment plugins is open-
source and available online4. At the same address and in
supplementary online material of this paper (available at
http://ieeexplore.ieee.org), we provide a video of the three
Demos. Demos A and B display how the ARK system can
be employed to automate some of the preliminary operations
in typical swarm robotics experiments. Instead, Demo C shows
a foraging experiment in which 50 Kilobots autonomously
operate in different virtual environments with varying features.

A. Demo A

In this demo, we automatically assign a unique sequential
ID to each robot i ∈ N in a swarm of size N . The process
works as follows: Each robot i selects uniformly at random
a natural number ri ∈ [1, 2d] which is converted to binary
form. Then, ARK requests the robots to display the d binary
digits one at a time through the LED colour (following the
convention of red=0 and blue=1). Once ARK collects all digits,
for all numbers that have been uniquely selected, it broadcasts
the unique number ri and the number i. The robot that selected
ri updates its ID to i. The process is repeated for robots that
selected non unique random numbers ri. The parameter d can
be selected as a function of the swarm size N and determines
the tradeoff between the speed of acquiring a binary sequence
and the probability of having non unique random numbers.
In the supplementary video, we show a demo with N = 100
robots and d = 11 digits in which the system is able to assign
100 IDs in a few seconds.

This process also shows how ARK can be employed to
retrieve data from the kilobots (in this demo, the number ri).
Several studies may require the collection and storage of data
from robots at the end of the experiment. While normally this
operation is done through a wired connection, ARK allows
wireless and parallel kilobot data collection.

B. Demo B

This demo displays an artistic performance of 50 robots that
form words: first the word IROS and after the number 2017
(see Figure 4(left) and the supplementary video). This demo
demonstrates how the ARK system can be used to overcome
the challenge of placing robots in relatively short time, and
with relatively high accuracy, a swarm of N Kilobots. The
ARK system reads the N target coordinates from a text file

4http://diode.group.shef.ac.uk/kilobots/index.php/ARK



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2017

Fig. 5. A screenshot of the Demo C involving 50 foraging Kilobots. The
robots sense the direction towards the source area (green circle) from a
distance of 70 cm (light green shadow). The robots pick up loads from the
source and carry it to the destination (yellow circle). The full video is available
in the online supplementary material.

and guides each robot i towards one target location Ti through
four types of motion messages: stop, straight, left, and
right. Each timestep, ARK computes the vector vi connect-
ing the robot i’s position to Ti. If the distance ‖vi‖ < 1 cm,
ARK sends to i the message stop; otherwise, if the angle
θ = 6 vi − φi (with φi the robot’s orientation), in radians,
is θ < −0.96 it sends left; if θ > 0.96 it sends right;
if (−0.96 ≤ θ ≤ 0.96) it sends straight. To minimise
unnecessary communication, ARK sends a message only if it
is different from the last sent message. The robot reacts to the
four types of message as follows: if it receives stop interrupts
its movements because it reached its destination; if it receives
straight, left or right, it moves forward, left, or right,
respectively.

C. Demo C

This demo has been designed to display a Kilobot swarm
capable of sensing and acting in augmented reality. The
demo is composed of varying virtual environments in order
to highlight this unique feature as it offers more flexibility
when designing experiments. Here, each environment has a
target area: in one, it is the source area and in the other, the
destination area. Source and destination areas are circular in
shape with an initial diameter ds = 40cm and dd = 5cm,
respectively. The robots can sense the direction towards the
target area, and if they are within or outside the area. Robots
are programmed to pick up one unit of a virtual load inside
the source area, carry it to the destination, and deposit the load
there. When performing actions in the virtual environments,
the robot signals by lighting its LED in blue. When picking
up a load from the source, the robot reduces the source’s size

for the rest of the robots (by reducing the area’s diameter by
1 cm). Similarly when a robot deposits loads at its destination,
the area increases by 1 cm.

This demo displays the possibility for robots to (i) sense
a virtual environment (by directing their motion towards
the target area), (ii) modify the virtual environment (by
picking/depositing virtual material), and (iii) switch virtual
environment (by alternating sensing of source and destination).
Note that in this demo, the actuation is not passive and that
the robots autonomously decide where and when to pick up
or deposit the load. In this simple demo, robots switch virtual
environment automatically with their pick/deposit action. The
supplementary video and Figure 5 show a swarm of 50
Kilobots that retrieve nectar from a virtual flower field and
deposit it in the honeycomb nest. Robots carrying a load are
distinguishable by their red LED in the video.

V. CONCLUSIONS

Robotic experiments involving swarms tend to be expensive,
and they present problems because the robots generally have
limited sensors and actuators, the time needed to calibrate
is extensive, and it is difficult to track and communicate
with each individual robot. This paper presents the ARK, a
virtualised arena, which enables inexpensive, swarm robotics
research with Kilobot robots. It overcomes limitations in these
low-priced platforms like limited sensing by using a virtualised
environment and corresponding virtual sensors for the robots.
This is enabled with a scalable overhead control system
which is robust to environmental uncertainties. Additionally,
the arena has an overhead tracking system that also scales
well for large swarms (hundreds of Kilobots). Finally, this
system is controlled by a base station where users can easily
assign IDs to robots, calibrate Kilobots in parallel, setup their
virtual environments, and plugin unique experiments. These
methods are confirmed in various demos and show an inex-
pensive, open-source tool that is flexible for configuration with
many, diverse experiments. ARK is useful both for collective
behaviour studies that require sensors and actuators currently
unavailable on kilobots, and for cheap prototyping to assess
the impact of new sensors/actuators before hundreds of them
are physically produced.

Future work involves adding even more functionalities to the
ARK system. The example ID assignment provided is scalable
but is prone to errors. Also while automatic calibration is
enabled with ARK, this is a difficult problem by itself to solve
which needs to be investigated further. Finally, we plan to
implement a default procedure to collect error-free data from
the robots at the end of an experiment. However, these add-ons
can easily be updated and installed by users in the future.

ACKNOWLEDGEMENTS

The authors would like to acknowledge and thank Michael
Port and Salah Talamali for their contributions in making this
project a success.



REINA et al.: ARK: AUGMENTED REALITY FOR KILOBOTS 7

REFERENCES

[1] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal, “Kilobot:
A low cost robot with scalable operations designed for collective
behaviors,” Robot. Auton. Syst., vol. 62, no. 7, pp. 966–975, 2014.

[2] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198, pp.
795–799, 2014.

[3] G. Valentini, E. Ferrante, H. Hamann, and M. Dorigo, “Collective deci-
sion with 100 Kilobots: Speed versus accuracy in binary discrimination
problems,” Auton. Agent Multi Agent Syst., vol. 30, no. 3, pp. 553–580,
2015.

[4] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Groß,
“Supervisory control theory applied to swarm robotics,” Swarm Intelli-
gence, vol. 10, no. 1, pp. 65–97, 2016.

[5] A. Reina, T. Bose, V. Trianni, and J. A. R. Marshall, “Effects of
Spatiality on Value-Sensitive Decisions Made by Robot Swarms,” in
Proc. Int. Symp. on Distrib. Auton. Robot. Syst. (DARS), ser. STAR,
2016.

[6] V. Trianni, D. De Simone, A. Reina, and A. Baronchelli, “Emergence
of Consensus in a Multi-Robot Network: from Abstract Models to
Empirical Validation,” IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 348–
353, 2016.

[7] A. Becker, G. Habibi, J. Werfel, M. Rubenstein, and J. McLurkin,
“Massive uniform manipulation: Controlling large populations of simple
robots with a common input signal,” in Proc. IEEE Int. Conf. Intell.
Robots Syst. (IROS), 2013, pp. 520–527.

[8] C. Dimidov, G. Oriolo, and V. Trianni, “Random Walks in Swarm
Robotics: An Experiment with Kilobots,” in Proc Int. Conf. on Swarm
Intell. (ANTS), ser. LNCS, 2016, vol. 9882, pp. 185–196.

[9] “Distributed algorithms for optimal decision-making,” http://diode.
group.shef.ac.uk.

[10] “Swarm organ,” http://www.swarm-organ.eu.
[11] “Engineering swarm intelligence systems,” http://www.e-swarm.org.
[12] “Societies of symbiotic robot-plant bio-hybrids as social architectural

artifacts,” http://www.florarobotica.eu.
[13] A. Antoun, G. Valentini, E. Hocquard, B. Wiandt, V. Trianni, and

M. Dorigo, “Kilogrid: a modular virtualization environment for the

kilobot robot,” in Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS),
2016, pp. 3809–3814.

[14] K. Sugawara, T. Kazama, and T. Watanabe, “Foraging Behavior of
Interacting Robots with Virtual Pheromone,” in Proc. IEEE Int. Conf.
Intell. Robots Syst. (IROS), 2004, pp. 3074–3079.

[15] P. J. O’Dowd, A. F. T. Winfield, and M. Studley, “The distributed co-
evolution of an embodied simulator and controller for swarm robot
behaviours,” in Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS), 2011,
pp. 4995–5000.

[16] S. Garnier, M. Combe, C. Jost, and G. Theraulaz, “Do Ants Need to
Estimate the Geometrical Properties of Trail Bifurcations to Find an
Efficient Route? A Swarm Robotics Test Bed,” PLoS Comput. Biol.,
vol. 9, no. 3, p. e1002903, 2013.

[17] A. Reina, M. Salvaro, G. Francesca, L. Garattoni, C. Pinciroli,
M. Dorigo, and M. Birattari, “Augmented reality for robots: virtual
sensing technology applied to a swarm of e-pucks,” in Proc. IEEE
NASA/ESA Conf. Adapt. Hardware Syst. (AHS), 2015, p. sB p3.

[18] F. Ghiringhelli, J. Guzzi, G. A. Di Caro, V. Caglioti, L. M. Gambardella,
and A. Giusti, “Interactive Augmented Reality for understanding and
analyzing multi-robot systems,” in Proc. IEEE Int. Conf. Intell. Robots
Syst. (IROS), 2014, pp. 1195–1201.

[19] W. Hoenig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian,
“Mixed reality for robotics,” in Proc. IEEE Int. Conf. Intell. Robots Syst.
(IROS), 2015, pp. 5382–5387.

[20] R. Ramaithitima, M. Whitzer, S. Bhattacharya, and V. Kumar, “Auto-
mated Creation of Topological Maps in Unknown Environments Using
a Swarm of Resource-Constrained Robots,” IEEE Robot. Autom. Lett.,
vol. 1, no. 2, pp. 746–753, 2016.

[21] F. Arvin, S. Yue, and C. Xiong, “Colias-Φ: An Autonomous Micro
Robot for Artificial Pheromone Communication,” Int. J. Mech. Eng. and
Robot. Res., vol. 4, no. 4, pp. 349–353, 2015.

[22] G. Bradski, “OpenCV Library,” Dr. Dobb’s J. Softw. Tools, 2000.
[23] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel

programming with cuda,” Queue, vol. 6, no. 2, pp. 40–53, 2008.
[24] E. Nikolaidis, C. Sabo, J. A. R. Marshal, and A. Reina, “Characterisation

and upgrade of the communication between overhead controllers and
Kilobots,” White Rose Research Online, Tech. Rep., April 2017.

[25] e-con Systems India Pvt Ltd, “e-CAM51 USB Datasheet,” Chennai,
India, www.e-consystems.com.


