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When less is more: Robot swarms adapt better 
to changes with constrained communication
Mohamed S. Talamali1,2, Arindam Saha1, James A. R. Marshall1,3, Andreagiovanni Reina1,4*

To effectively perform collective monitoring of dynamic environments, a robot swarm needs to adapt to changes 
by processing the latest information and discarding outdated beliefs. We show that in a swarm composed of ro-
bots relying on local sensing, adaptation is better achieved if the robots have a shorter rather than longer commu-
nication range. This result is in contrast with the widespread belief that more communication links always improve 
the information exchange on a network. We tasked robots with reaching agreement on the best option currently 
available in their operating environment. We propose a variety of behaviors composed of reactive rules to process 
environmental and social information. Our study focuses on simple behaviors based on the voter model—a well-
known minimal protocol to regulate social interactions—that can be implemented in minimalistic machines. 
Although different from each other, all behaviors confirm the general result: The ability of the swarm to adapt 
improves when robots have fewer communication links. The average number of links per robot reduces when the 
individual communication range or the robot density decreases. The analysis of the swarm dynamics via mean-
field models suggests that our results generalize to other systems based on the voter model. Model predictions 
are confirmed by results of multiagent simulations and experiments with 50 Kilobot robots. Limiting the commu-
nication to a local neighborhood is a cheap decentralized solution to allow robot swarms to adapt to previously 
unknown information that is locally observed by a minority of the robots.

INTRODUCTION
Monitoring an environment through a swarm of minimalistic 
robots can be useful in adverse scenarios that impose constraints on 
the individual robots’ capabilities (1–3). Examples are biodegradable 
devices—simple by design constraints—to monitor remote loca-
tions, such as ocean floors or in-body blood vessels (4), or dispos-
able devices—simple by budget constraints—deployed in hazardous 
search and rescue missions with a high risk of damage (5). This type 
of application may not allow for centralized control or human 
supervision, whereas controlling the robots via minimalistic decen-
tralized behaviors can be a viable solution. Minimal computing pro-
vides the advantage of higher transferability to simpler platforms, 
such as nano- and microrobots (6, 7). Here, we investigate the gen-
eral scenario in which the environment has n alternative target sites, 
each with an intrinsic importance (or quality), and the swarm is 
tasked with reaching a consensus in favor of the most important 
site, the so-called best-of-n problem (see Fig. 1).

Considerable work has been dedicated to the design of decen-
tralized robot behaviors to solve the best-of-n problem (8–10). 
Compared with previous work, we solve a more general variant of 
the problem using simpler robots in terms of required capabilities. 
Whereas most studies have investigated solutions of the best-of-n 
problem in static and binary (n = 2) setups, here, we provide mini-
mal behaviors to reach consensus decisions in a dynamic environ-
ment in which the number of target sites n and their quality vary 
over time. Despite previous studies having shown qualitative changes 
in the system dynamics for n > 2 (11), only a few studies have con-
sidered the best-of-n problem with more than two options. The 
proposed solutions typically used robots with higher requirements 

than ours in terms of computation, memory, and communication 
capabilities and assumed prior knowledge of the number and loca-
tion of the alternatives (12–16) (see also text ST1). Exceptions are 
our previous works (17, 18), which relied on similar minimalistic 
behavior and the absence of prior knowledge but were limited to static 
environments. There were other minimal behaviors, e.g., (19), that 
could potentially be modified to remove limiting assumptions on a 
robot’s prior knowledge; however, it has been shown that they were 
unable to adapt to environmental changes (19, 20). The few studies 
on best-of-n decisions in time-varying environments were limited 
to n = 2 binary decisions with robots knowing a priori the options 
(21) or their location (20, 22) and only agreeing on the one with
the highest quality. Requiring prior knowledge about the number of 
alternatives n may reduce the applicability of such solutions. As well 
as collectively selecting the best alternative, a decentralized process
of decision-making should also include the phase of decentralized
discovery of the available alternatives (23, 24). Behaviors that proved 
successful in the voting phase may suffer a drastic reduction of
their performance when both discovery and voting phases are con-
sidered (18). We study collective behaviors to operate in time-
varying environments; therefore, they include both mechanisms
to discover environmental changes and to spread information.
Time-varying environments are an intrinsic characteristic of several
application scenarios, and efficient solutions that consider this
aspect are therefore necessary for the deployment of robot swarms
into the real world.

In this study, the robots have no prior knowledge of the prob-
lem. Instead, a robot can only know about a target site either via 
individual exploration of the environment (it discovers the site) or 
through social interactions with other robots (it receives the site’s 
location). We consider robots that have minimal sensory, memory, 
and communication capabilities. In terms of sensory capabilities, 
robots in close proximity to a target site are able to make noisy esti-
mates of its quality. In addition, because the task requires the 
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selection of the best site, robots are able 
to estimate their own approximate 
position and move within the environ-
ment. In terms of memory capabilities, 
each robot can only memorize the loca-
tion and quality of the selected site—
that is, the robot has one opinion about 
the best site. In terms of communica-
tion capabilities, a robot can only locally 
broadcast one single piece of informa-
tion: the location of the site it considers 
to be the best.

The robots combine information 
that they locally acquire in the environ-
ment with information that they receive 
from other swarm members. Our be-
haviors are based on the classical voter 
model (25) in which each robot is itera-
tively influenced by a single random 
neighbor. Individual and social infor-
mation is combined through a behavior 
based on the cross-inhibition pattern 
(9, 17) by which conflicting informa-
tion between two communicating ro-
bots causes the robots to reset their own 
opinion and poll other robots’ opinions. 
Via cross-inhibition, a swarm can reach 
a consensus on the best available option 
while avoiding decision deadlocks, as 
shown in theoretical models (11, 26), 
honeybee nest-site selection (27), and 
robotic applications (18, 28). A widely 
used alternative behavior is based on 
the direct-switching pattern (29). This, 
however, has the limitation of only 
breaking the deadlock of symmetric 
decisions—when options have the same 
quality—through noise (30–32) and 
therefore can be slow. Through a com-
bination of experiments, simulations, 
and mathematical analysis, we study when 
behaviors based on cross-inhibition and 
direct switching can adapt to changes in 
the environment, particularly when the 
best site appears, disappears, or changes 
its quality. Through analysis at multiple 
description levels, we measure to what 
extent these behaviors are scalable to 
increasing swarm sizes, are sensitive to 
social information, and are robust to sen-
sorial noise.

To precisely control the swarm be-
havior and predict its dynamics in dif-
ferent scenarios, we model the collective 
dynamics through a system of ordinary 
differential equations (ODEs). In swarm 
robotics, accurate models are necessary 
but generally hard to obtain (1, 10, 33). 
We show that our model accurately 

Fig. 1. Adaptive monitoring of time-varying environments. (A) The robot swarm may be deployed to monitor a 
forest fire and collectively select the best site (e.g., most urgent) where immediate action of firefighters on the 
ground is necessary (100). Robots explore the environment to acquire individual information and communicate with 
each other to exchange opinions. (B) We test the behavior on a swarm of 50 Kilobots, which are simple robots with 
limited capabilities. The target sites, here superimposed on the image as colored circles, are perceived by the robots 
through the ARK system (95), which allows the robots to perceive a simulated time-varying environment. Over time, 
new sites appear, and existing sites change in quality or disappear. The swarm adapts accordingly. Videos of the 
experiments are available as Movie 1 and movies S1 and S2.

Movie 1. Less is more. When simple robots have access to less social information, due to fewer communication links, 
they can adapt better to environmental changes.
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predicts the swarm dynamics and highlights a counterintuitive 
mechanism: By reducing the range of communication, the swarm 
can better adapt to changing environments. This result is general 
across our tested behaviors, and through the model, we can under-
stand the cause of this effect. In our experiments, we observe that 
less, in terms of fewer communication links per robot, leads to more 
effective spreading of information within the swarm (Movie 1). 
This result is in contradiction to the widely accepted belief that 
more connected networks share information more effectively 
(19, 34–36) and is instead congruent with works that document the 
emergence of the “slower is faster” effect (37). This effect occurs 
when increasing the performance at the individual level causes a 
decrease in the collective performance and has been found in several 
other contexts, such as ecology (38), voting dynamics (39, 40), and 
collective animal behavior (41, 42). In this study, by reducing the 
number of communication links, robots sacrifice the information-
spreading speed, which is maximized in highly connected swarms, 
to facilitate adaptation. Such a solution is simple and highly effective.

RESULTS
We designed two collective robot behaviors to solve the problem of 
selecting the best site (best-of-n) in dynamic environments. We 
opted for minimalistic behaviors that can also run on minimal 
machines with limited capabilities. Both behaviors extend the classical 
voter model (25) in which, at each control step, a robot randomly 
selects one of the messages from its neighbors to update its opinion 
(see Fig. 2). The message only contains the location of the sender’s 
preferred site i; thus, a robot, once informed about a previously un-
known site, goes to assess its quality qi. While doing so, the robot 
remains in a polling state in which it listens to incoming messages 

that it uses to update the location of the target site. Equipped with 
social information, the polling robot follows a biased random walk 
until a target site is reached and estimates its quality. During this biased 
random walk, the robot most often reaches the target site that has more 
support among its neighbors. Robots, to avoid the quick spreading of 
erroneous information, do not share the quality of their preferred site, 
but each makes an independent noisy estimate, a method that has been 
shown to improve collective decision accuracy (18, 43). Nonpolling 
robots instead diffuse in the environment through a random walk 
to monitor the available target sites and to share their opinion with 
each other on the best site. When a robot does not have an opinion 
(i.e., it is uncommitted) and encounters the target site Tx, it makes a 
noisy estimate of its quality qx and selects Tx as the best site (commits 
to Tx) with probability proportional to qx. Every time a robot com-
mitted to Tx moves in the proximity of site Tx, it updates the noisy 
estimate qx to keep track of possible quality variations over time. 
The swarm converges toward the best option because each robot 
communicates with a frequency linearly proportional to the esti-
mated quality (44). Such quality-dependent communication was 
inspired by the house-hunting behavior of social insects (45, 46) 
and was successfully implemented in several swarm robotics sys-
tems (17, 19, 43, 44, 47).

The presented behavior implements the cross-inhibition pattern 
for the update of social information (11, 17, 26, 27). The peculiarity 
of this social update pattern is the inhibition between robots com-
mitted to different sites (Fig. 2A). Upon inhibition, the robot enters 
a state of “indecision,” the polling state, during which it temporarily 
suspends active recruitment and polls other robots’ opinions until it 
gets recruited. The alternative social update pattern is the direct-
switching pattern by which robots committed to different sites 
directly recruit each other (Fig.  2B). A recruited robot directly 
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Fig. 2. Individual robot behavior. (A and B) The robot iteratively updates its opinion based on environmental (dashed transition lines) and social information (solid 
transition lines). The behaviors can include any of two alternative exploration rules (green dashed transition), compare and resample, and any of two alternative social 
interaction patterns (black solid lines), cross-inhibition (A) and direct switching (B). Through direct switching, any robot can get recruited and immediately changes its 
commitment state. Instead, through cross-inhibition, only polling robots can be recruited. Therefore, when a committed robot receives a message from a robot committed 
to a different site, it resets its commitment (inhibition) and activates the polling state. (C) Pseudo-algorithm of the robot behavior in the committed state (and in the 
uncommitted state when memory is void). The green and red conditions are mutually exclusive and indicate the effect of the resample and compare rules, respectively. 
These minimalistic behaviors can be potentially implemented on extremely simple devices. See more details in text ST2.

 at S
H

E
F

F
IE

LD
 U

N
IV

E
R

S
IT

Y
 on A

ugust 3, 2021
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

http://robotics.sciencemag.org/


Talamali et al., Sci. Robot. 6, eabf1416 (2021)     28 July 2021

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

4 of 14

switches its commitment without activating the polling state. We 
tested both social information transfer patterns in theory and the 
cross-inhibition pattern, which analysis predicts is more robust 
(11, 26), in physical robot swarms.

Our focus is on the ability of the swarm to collectively select the 
best site and to adapt to environmental changes when a better site 
appears, the best site disappears, or a site’s quality changes. After 
any of these changes, we want the swarm to converge to a stable 
consensus in favor of the best site, with a supermajority of the pop-
ulation (quorum 80%) having the same opinion. To let the swarm 
adapt, we introduce two alternative rules to allow individual robots 
to reconsider their opinion when exposed to new environmental 
evidence: compare and resample.

Minimal rules are sufficient to let the swarm adapt 
to dynamic environments
We propose the compare and the resample exploration rules to 
extend the base behavior of Fig. 2. These rules allow committed robots 
to constantly process the latest information that they acquire locally 
from the environment because, otherwise, the swarm may “freeze” 
into an absorbing state. The compare rule lets the robot compare 

the quality of its chosen site with the quality of any site found in the 
environment and probabilistically commit to the newly discovered  
site only if it has a higher quality. In this way, individual robots locally 
filter environmental information with a response threshold that dy-
namically changes with the current quality estimate (see Materials 
and Methods and text ST2) (48, 49). The resample rule does not 
require any comparison, but committed robots process environ-
mental information—upon discovery—with a small constant prob-
ability  (50). In this way, swarms that reached a consensus for the 
best location maintain on average a small proportion of robots 
reconsidering their opinion.

Comparing the performance of the two exploration rules—compare 
or resample—Fig. 3 shows the relationship between increasing indi-
vidual robot capabilities and faster collective adaptation. On the 
one hand, when robots individually filter the environmental infor-
mation (compare rule), the swarm shows a faster collective response 
to changes (Fig. 3B). However, filtering through comparison re-
quires slightly more computation and the possibility to store the 
option’s quality for subsequent comparison; such requirements 
may not be available at every degree of individual complexity or 
even necessary (51). On the other hand, the resample exploration 

Fig. 3. Large communication ranges and swarm sizes are detrimental to swarm adaptability. The probability and speed of adaptation to a new better target site 
(with quality qx = 0.8), when the swarm starts from a full commitment in favor of an inferior site (with quality qy = 0.7), for the four analyzed behaviors. Grayscale maps 
show results for 100 multiagent simulations of Tmax = 6 × 104 time steps; simulated agents only use the cross-inhibition pattern. Superimposed lines are theoretical pre-
dictions; theory and simulations show good qualitative agreement. (A and C) Adaptation probability is the proportion of runs that adapted over the total number of 
simulations. Adaptation probability decreases for increasing swarm size S and increasing communication ranges; lines show the bifurcation point (see Materials and 
Methods) for both social interaction patterns. (B and D) Adaptation speed is high for low communication ranges and swarm sizes; superimposed lines show predicted 
connectivity transitions: The dashed curve predicts, on average, one neighbor per robot 〈k〉 = 1 and the solid curve 〈k〉 = k* = 4.51 neighbors per robot [corresponding to 
the giant-component transition (101)]. The best performance in terms of both speed and ability to adapt can be achieved with intermediate values of 〈k〉. The inset shows 
that when increasing the robots’ communication range rs, or the swarm size S, the average number of communication links per robots per time step 〈k〉 increases accordingly.
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rule is a reactive technique that does not require any additional 
individual computation nor capability at the cost of a slower collec-
tive adaptation to changes (Fig. 3D). In addition, the individual-level 
simplicity of this rule requires the selection of the parameter  for 
probabilistic environmental sampling. A very low  will not let the 
swarm adapt, whereas values of  that are excessively high can cause 
the swarm to remain undecided, with a considerable fraction of 
robots constantly changing opinion for any of the n alternative sites 
(see fig. S1). Therefore, the value of  needs to be appropriately 
selected depending on the scenario and individual characteristics 
(see sensitivity analysis in text ST3).

Communication range negatively correlates with  
swarm adaptability
Multiagent simulations show a counterintuitive result. Figure 3 (A and C) 
shows the probability of the swarm adapting for increasing commu-
nication range rs and swarm size S. The swarm starts from a full 
consensus in favor of a target site Ty when a new target site Tx with 
better quality (qx > qy) appears. We observe that through both rules, 
resample and compare, the swarm has a lower probability of adapt-
ing with an increased communication range. In the extreme case of 
a fully connected network—attained with the maximum communi-
cation range rs = 0.5—a simulated swarm of S > 10 robots is never 
able to adapt to new better sites. From the point of view of social 
interactions (not considering physical interactions), an increase in 
communication range is equivalent to an increase in robot density. 
Under dense conditions, the high number of neighbors per robot 
undermines the ability to adapt. Figure 3 (B and D) instead shows 
that extremely low values of the communication range can slow 
down the adaptation. There is therefore an intermediate value for 
which adaptation occurs at maximum speed. Qualitatively similar 
results can be obtained with more sophisticated mechanisms to 
sample the neighbors’ votes. In text ST4, we show that collective 
behaviors based on the local majority rule (i.e., selecting the site that 
has been voted the most by the neighbors) (52) also benefit from a 
limited number of communication links per robot.

A strongly opinionated minority encounters competition 
among voters
To understand and predict the swarm behavior and the effect of the 
parameters on the performance, we modeled the collective decision-
making process through a system of ODEs. Each equation describes 
how subpopulations (groups of robots with the same opinion) 
change over time as a function of environmental characteristics and 
robots’ capabilities. Although we control the robots with individual-
level behaviors (Fig. 2), we are interested in understanding and pre-
dicting the resulting collective behavior, which we describe with 
our models.

A classical approach to model the collective behavior of a robot 
swarm is to build a mean-field model describing the average be-
havior of an infinite-sized swarm of fully connected individuals 
(33). Although this type of model has proved very useful in several 
scenarios (53–55), their assumptions make them of little utility to 
explain the dynamics observed in the scenario that we consider 
here. A model that assumes an infinite-size system cannot describe 
size-dependent dynamics. We observed above that the investigated 
swarm has a qualitative change in its environmental response de-
pending on its size (see Fig. 3). In addition, in swarm robotic 
systems, local communication limits the interaction at each voting 

iteration to a limited neighborhood (a small fraction of the entire 
population); therefore, assuming a fully connected mean-field 
communication topology may typically be inaccurate. Therefore, we 
developed an ODE model that has explicit dependence on swarm 
size and robot density and is able to describe effects determined by 
a sparse communication topology.

Typically, at the start of every adaptation, the swarm has reached 
a consensus for the previously best site Ty when a new better site Tx 
appears. Therefore, subpopulations committed to different sites 
have sizes very different from each other, and the few-versus-many 
condition arises—that is, there is a small minority competing against 
a large majority. Depending on how frequently their members vote, 
subpopulations can be considered as strongly or weakly opinionated. 
Because communication frequency is proportional to site qualities 
qx and qy, with qx  >  qy, the small fraction of robots that sponta-
neously discover Tx—the strongly opinionated minority of size Sx—
will vote more frequently than robots committed to Ty—the weakly 
opinionated majority of size Sy. However, under the few-versus-
many condition, competition among voting messages may nullify 
the bias from quality-dependent communication frequency and 
lock the swarm into a consensus for the inferior site Ty. Competi-
tion arises because robots select messages following the voter model 
approach (25). Therefore, a robot with m neighbors will select (and 
process the information of) one message among the m received 
messages (assuming that all m neighbors have sent their message). 
As a consequence, each neighbor (voter) of a robot (receiver) has a 
1/m probability that its message would be read. It is therefore clear 
that increasing the number of neighbors that each robot has would 
dilute the impact of each voter. We model such a competition 
among voters via the Holling type II functional response of Fig. 4A, 
which was originally formulated in ecology to describe the interplay 
between populations of prey and predators (56). This functional 
response accounts for the fact that a predator requires time to con-
sume prey. Therefore, the biomass of the consumed prey increases 
sublinearly with the biomass of the prey population. The same func-
tional form has also been used in different fields with different 
names, for example, the Michaelis-Menten equation in chemical 
kinetics (57) and the Hill equation in biochemistry (58).

Borrowing the terminology from ecology, we show in Fig. 4A the 
extreme few-versus-many condition of a single “predator” (minority 
committed to Tx of size Sx = 1; red agent in Fig. 4A) and S − 1 “prey” 
(susceptible robots, majority committed to Ty). The predator can 
“eat” (recruit) a number of prey that is a function of the majority 
size Sy = S − 1. In small swarms, the recruitment rate per voter is 
limited by the event of susceptible robots entering the communica-
tion range of the single committed robot (which occurs with rate 
proportional to the robot’s communication area ​ ​r​s​ 

2​​). By increasing 
the swarm size, the recruitment rate to Tx increases as the probability 
of committed-susceptible interaction increases, until it saturates at 
a maximum rate where the population density is high (Fig. 4A). In 
large swarms, the recruitment rate saturates because, in a high den-
sity situation, each message competes with several others to be read. 
Note that, in our system, the robots both receive and send messages, 
therefore increasing the number of susceptible robots (majority) 
also increases the competition among messages.

Through the functional response of Fig. 4A, our model intro-
duces recruitment rates that are asymmetric with respect to the 
number of recruiters and susceptible robots. Figure 4B shows that 
asymmetry in the interactions can lead to a higher recruitment rate 
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for the inferior site than for the superior one, when Sx ≪ Sy. Instead, 
with the standard infinite-size approximation (33), the mean-field 
model always has symmetric recruitment rates (with the red curve 
of Fig.  4B always higher than the blue). Asymmetric recruitment 
rates cause a nonmonotonic commitment rate to Tx and thus a 
bistability of consensus (Fig. 4, C to E). The asymmetry vanishes as 
robot density is decreased (Fig. 4, C and D), restoring monostability 
for the best site. As a consequence, in low robot densities, there is a 
small difference between ours and the infinite-size models. This dif-
ference increases as either swarm size S or communication range rs 
increases. Stability analysis reveals, for both the compare and resample 
rules and both the cross-inhibition and direct-switching patterns, 
the presence of a bifurcation as the robot density is increased (see 
Fig. 3). Before bifurcation (small S and small rs), the single stable 
fixed point corresponds to the entire group adapting to the best 
option, in agreement with infinite-size approximations. After the 
bifurcation, a second stable fixed point appears that corresponds to 
the swarm being unable to adapt to the new better option, remain-
ing instead trapped in the current consensus on Ty (fig. S6). Using 
classical mean-field approximation, no bifurcation would be pres-
ent, and it would fail to describe the robot swarm dynamics.

Fewer communication links make the swarm more flexible
Our results hint at a counterintuitive solution to the challenge of 
operating large-scale swarms: The adaptability of the swarm 

increases as the robots’ communication range decreases (Fig. 3). 
That is, interacting with fewer robots at a time can improve the 
ability of the swarm to disseminate previously unknown informa-
tion collected locally. We conducted a set of experiments (Fig. 5) 
with swarms of 50 Kilobots—small robots for collective intelligence 
studies (59). When the robots were able to communicate with any 
other robot—forming a fully connected topology—the swarm failed to 
adapt its decision to new better sites (Fig. 6). Once the swarm reached 
a consensus in favor of one alternative, robots that found new sites, 
even with a better quality than the previous, were a minority compared 
with the rest of the swarm. That minority immediately faced a large 
majority that quickly converted the minority to the consensus. When 
limiting communication, minorities with better opinions could 
gradually gain traction in the population and eventually steer the 
swarm toward the correct choice (Fig. 5, C to F). Figure 5 (A and B) 
shows the results from simulated and physical robot experiments.

Although a small number of communication links can bring 
advantages in terms of better adaptability, it is important to note 
that other types of processes can instead benefit from long commu-
nication ranges or even from no communication whatsoever. Text 
ST5 and fig. S3 show that the information-spreading speed is maxi-
mized in fully connected networks and decreases by reducing the 
number of links. Therefore, in processes where no voting among 
robots is necessary and information needs to spread quickly, large 
communication ranges are beneficial. Text ST6 and fig. S4, instead, 

Fig. 4. Modeling asymmetric recruitment rates explains the interplay between a strongly opinionated minority and weakly opinionated majority. (A) A single 
robot committed to the superior site Tx (red agent in the insets) recruits susceptible robots (blue agents committed to the inferior site Ty) at a rate that grows sublinearly 
with the number of susceptible robots (here S − 1). The recruitment rate, based on the Holling type II functional response (red solid curve), increases with S when the 
number of susceptible robots is low and interactions sporadic. For high numbers, the rate saturates to the frequency of transmission (horizontal dot-dashed line). This is 
in contrast to the infinite-size approximation in which the recruitment rate (green dashed line) has linear dependence on the number of susceptible robots. (B) Recruitment 
rate to a superior (red qx = 0.8) and an inferior (blue qy = 0.7) site is asymmetric in our model (solid lines) and symmetric in infinite-size models (dashed lines). We fix S = 100 and 
vary the number of recruiters to Tx on the horizontal axis (where the recruiters to Ty are the complement to x-axis values, S − x, for direct switching). (C to E) Rate of change 
of robots committed to site Tx (y axis) against the proportion of robots committed to Tx (x axis), as from Eq. 1, for varying communication range rs (C), swarm size S (D), and 
for the compare (C and D) and the resample rules (E).
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show that robots with noiseless sensors can achieve high perform
ances without communicating with each other. However, both analyses 
indicate that a swarm of robots, which rely on noisy sensors and ex-
change votes to make a collective decision, maximizes the ability to 
adapt to environmental changes via short-range communication. 
The two proposed behaviors can also scale up to a large number of 
options. In the experiments of Figs. 5 and 6, we tested the swarm in 
collective decisions among up to n = 3 sites. In text ST7, we ran a set 
of simulations to test the swarm adaptability in an environment 
with an increasing number of alternative sites, up to n = 9. We show 
that both behaviors naturally scale to a higher number of options.

Value-sensitive collective adaptation
We can further extend our analysis to examine adaptation as a func-
tion of option values; the model predicts a value-sensitive adaptation 

as shown in Fig. 7. A swarm committed to site Ty with quality qy will 
adapt to a new, better site Tx depending on both the quality qy and 
the difference  = qx − qy. The minimum quality improvement  
required for adaptation increases with qy. In other words, the swarm 
with a consensus in favor of a good location (high qy) adapts to a 
better location only if it has a much higher quality (large ), whereas 
adaptation in swarms with low-quality opinions (low qy) also happens 
for small improvements (small ). This value-sensitive mechanism 
is not directly encoded in the individual agent rules; rather, it is the 
observed emergent behavior of the collective (see also text ST8).

Value sensitivity has been predicted and observed in a variety of 
natural systems (26,  27,  60,  61) and engineered in robot swarms 
(9, 28, 62) in a variety of processes, such as decision-making or for-
aging. Whereas most work on decision-making focuses on accuracy 
(13, 19, 20), in which only the best option is rewarded, a value-based 

Fig. 5. The robot swarm can collectively select the best target site in a dynamic environment. (A) Timeseries of six experiments with swarms of 50 Kilobots monitoring 
time-varying environments with a collective behavior based on the compare rule and the cross-inhibition pattern (thick lines are the mean, and thin lines are single runs). 
The swarm successfully adapts in all three phases: appearance and disappearance of the best site and swap of quality between the best and second best site. (B) Similar 
results are obtained through physics-based simulations with behaviors based on both the compare (top) and the resample (bottom) rules (lines are the mean of 100 runs 
with 95% confidence interval as shades). (C to J) Overhead view of one experiment at salient moments; there are three target sites—here superimposed on the images as 
red, green, and blue circles—that can be locally perceived by robots through augmented reality [ARK (95)]. (C) The robots initially have a full consensus in favor of the 
previous best site (blue qB = 0.6), when a new better site (red qR = 0.8) appears. (D) A minority of the swarm discovers the new site. (E) Through local interactions, the red 
opinion spreads throughout the robot swarm. (F) The swarm converges to a consensus for red. (G) The red site disappears. (H) The swarm reverts to a consensus for blue. 
(I) The quality of the blue and green sites swaps (qB = 0.4 and qG = 0.6). (J) The swarm once again adapts its decision to the best available site. Full videos are available as 
supplementary electronic material in movie S1.
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metric has a reward dependent on the chosen option’s quality, inde-
pendently from it being the best (63); in such scenarios, value-
sensitive decision dynamics can be beneficial (26). Our observations 
of value-sensitive collective adaptation align with previous analysis 
on costs for switching between options when consensus for one 
particular option is already established (64).

DISCUSSION
We propose two collective behaviors to allow swarms of minimalistic 
robots to track the best target site in a time-varying environment 
(the dynamic best-of-n problem). Robotic systems that aim to be 
deployed in the real world, where real-time changes can be the 
norm rather than the exception, need to be able to operate in 
time-varying environments. Our behaviors enable the robot swarm 
to successfully adapt to environmental changes, which can be the 
appearance or disappearance of a site or a change in sites’ qualities. 

The requirements in terms of individual robot capabilities are mini-
mal, making the implementation possible even in simpler robots 
than the ones used in our experiments, such as organic nanorobots 
or disposable devices (4, 5). Despite the individual simplicity, the 
swarm is collectively able to track the site with the highest quality 
and show a value-sensitive response to changes (Movie 1).

Previous work that investigated simple voting behaviors to reach 
swarm consensus on the best option (19) has shown an increase in 
decision performance, in terms of consensus speed, when individuals 
use more social information (a result also confirmed by our analysis 
in texts ST4 and ST5). In particular, they replaced the voter model 
with the local majority rule (selection of the most voted site by 
neighbors). Their study also showed that such an increase of social 
information makes the swarm unable to adapt to changing environ-
mental conditions once a consensus has been reached. Given the 
importance of adapting to time-varying environments, we focused 
our analysis on mechanisms that allow or prevent the swarm from 
effectively adapting the collective decision. Previous theoretical 
mean-field models based on the infinite-size assumption predicted 
that reducing social information—that is, replacing the majority 
rule with the voter model—would facilitate adaptation to the best 
available site (19, 47). Finite-size simulations, however, conflicted 
with this prediction and showed that adaptation is not possible with-
out strategies that keep the swarm from reaching full consensus (for 
instance, by using asocial agents) (20). In this study, we reconcile 
theory and application: Theoretical models allow us to understand 
the adaptation dynamics and design minimal behaviors that can adapt 
to changing environments. Physical robot experiments with a swarm 
of 50 Kilobots and extensive simulations confirm our findings.

Our analysis shows the counterintuitive result that reducing the 
connections between individuals improves the spreading of local-
ized information and, in turn, allows an informed minority to effec-
tively change the opinion of the entire group. This finding is 

Fig. 6. The Kilobot swarm adapts to environmental changes when robots use 
short-range communication. Results from 100 simulations (A to D) and six physical 
robot experiments (E and F) with 50 Kilobots with a short (left column) and a long 
(right column) communication range. The swarm starts with a consensus in favor 
of the blue site (with qB = 0.6) and is expected to adapt to the red site, which has a 
higher quality qR = 0.8. Both simulations and physical robot experiments show that 
the swarm successfully adapts to changes when robots exchange messages locally 
(a short communication range grants a 100% success rate) but fails to reliably 
adapt when the communication is global. The proportions of successful adapta-
tions are reported above each scatterplot. A run is considered successful when the 
average size of the population committed to red in the last 10 min is above 80% 
quorum (horizontal dashed line). Fluctuations are due to a relatively high level of 
noise q = 0.1 in the robots’ estimates of the site qualities. Global communication in 
the Kilobots is achieved through a virtual transreceiver implemented via ARK (95). 
Videos of the Kilobot experiments for both conditions (six repetitions each) are 
available with the paper in movies S1 and S2.
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Fig. 7. Value-sensitive adaptation emerges. The swarm displays a value-sensitive 
response to environmental changes. This means that a new better site Tx is selected 
depending on both the quality of the previous site Ty and the difference  = qx − qy 
between the qualities of Tx and Ty. A consensus for a good site (high qy) is changed 
only if the quality improvement is high (high ). Instead, the swarm is less selective 
(small ) when the current site’s quality qy is low. The grayscale maps show the 
proportion of 100 multiagent simulations that adapted within Tmax = 6 × 104 time 
steps using the compare (A) or the resample (B) exploration rules. The S = 100 agents 
only implement the social information pattern of cross-inhibition and use communi-
cation range rs = 0.3. The superimposed lines are the bifurcation points for the ODE 
models based on the two alternative social information patterns.
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opposed to the widely accepted and intuitive belief in network 
science that more connections lead to more effective information 
exchange (19, 34–36, 65, 66). Although information-spreading speed 
may indeed increase (see text ST5 and fig. S3), we show that 
adaptation—the ability to modify the group’s belief in light of new 
information—is impaired. Adaptation can be restored by reducing 
the average number of connections per robot; this can be achieved 
by reducing either the robot’s communication range or the robot 
density (see Fig. 3). Through transition rates that depend on both 
the swarm density and the size of subpopulations committed to dif-
ferent sites, we model a form of “competition” among voters that 
stems from the voter model. The model is complex but tractable 
and allows us to study, via bifurcation analysis, the swarm’s ability to 
adapt when the sizes of committed subpopulations are unbalanced—
that is, when there is a large majority and a small minority. When 
robots have a limited number of communication links, the influ-
ence of just a few strongly opinionated robots (high-quality site) 
can succeed in recruiting other robots. Instead, when the communi-
cation can happen within large groups—due, for instance, to a large 
communication range—the minority’s opinion is suppressed by the 
large majority, even when the latter is less opinionated (i.e., when 
the majority is committed to a lower-quality site). The minority’s 
inability to spread better information is exacerbated in largely 
unbalanced subpopulations (few versus many) and vanishes when 
the two factions have comparable sizes (Fig. 4).

Our theory is in agreement with observations from previous 
swarm robotics studies that investigated the best-of-n problem in 
dynamic environments. In particular, Prasetyo et al. (20) showed 
that adaptation can be obtained by freezing a proportion of the 
swarm committed to every inferior site (through so-called stubborn 
robots). Our model explains the cause of their empirical observa-
tions because stubborn robots improve adaptability by reducing the 
imbalance between committed subpopulations (reduce the few-versus-
many ratio; see also text ST16). Despite the promising results, their 
solution limits the applicability of the behavior because robots—as 
in other studies (21)—need prior knowledge of the alternative 
options (e.g., site locations). Therefore, these approaches may not 
scale to scenarios with options that dynamically appear and disap-
pear. Our solution is more general because it includes the possibility 
and necessity of the spontaneous discovery of the options. Balanc-
ing the frequency of spontaneous discovery and social interactions 
is crucial to achieve coordinated responses to environmental changes 
in collective systems (18, 36, 67–69). Again, our model is now able 
to explain the mechanisms from previous empirical observations. 
For instance, we previously documented that relatively frequent 
social interactions speed up the decision but reduce the ability of 
the swarm to modify its decision once a consensus for an inferior 
option is made (18). The best empirically found solution comprised 
a first phase with spontaneous discovery only and a second phase of 
social interactions. Retrospectively, we can now understand the 
mechanism that is at the source of the success of such a collective 
behavior; it allows the swarm to split into committed subpopulations 
of comparable sizes before triggering quick consensus. In addition, 
we would like to reiterate the importance of having an adaptable 
system because adaptation can act as a means of correction of earlier 
mistakes and have a marked impact on accuracy. In summary, 
existing solutions achieved adaptability by avoiding largely unbal-
anced distributions of opinions in the population. Our understanding 
of the model allowed us to also propose alternative strategies, for 

instance, the communication range reduction, that allow adaptability 
even in case of extremely unbalanced starting conditions.

Our work has the potential to affect various disciplines. The 
investigated problem—that is, how an opinionated minority can 
spread its opinion throughout a large population that holds a different 
belief—is relevant in biology (70), social sciences (71), and swarm 
robotics (72). The underlying mechanism of our collective behavior—
that is, individuals have social interactions based on the voter model 
(25)—is also widely used to model opinion dynamics in humans 
(73), collective behavior of animals (74), and natural evolution in 
ecosystems (75), as well as to design robot swarms (8). The results 
are not limited to the voter model because we also tested collective 
behaviors with social interactions based on the local majority rule 
and observed the same dynamics (text ST4). The number of 
communication links per individual determines when a more opin-
ionated minority is able to persuade a less opinionated majority. 
We conjecture that any voting system, in which probability of adop-
tion of an opinion by a voter is a sublinearly increasing function of 
its representation among the voter’s neighbors, will exhibit the less-
is-more pattern reported here. Reducing the interaction range at 
the individual level to collectively adapt to changes is a cheap solu-
tion that might be exploited by both natural and artificial swarms. 
Recent studies have indeed observed that animal groups reduce 
their interaction network to effectively respond to environmental 
changes (41, 42). The behaviors proposed in this study also have 
similarities with the decision-making behavior of social insects in 
terms of quality-dependent communication protocols (45, 46) and 
individual rules to adapt to environmental changes (76). Although 
it has been shown that direct comparison of alternatives is not 
necessary to reach a consensus in favor of the best site (50, 77), it 
remains unclear in which contexts an experience-dependent filtering—
similar to our compare rule—is adopted by individual insects when 
reconsidering their choice (48, 78). Although more demanding at the 
cognitive level, the compare rule shows better performance than the 
cognitively simpler resample in terms of both adaptation speed and 
robustness to parameter variations (Fig. 3, B and D, and texts ST3 
and ST8). In the same way, when the individuals have more capabilities 
to process more social information via the local majority rule, the 
swarm adapts faster (text ST4). Our study therefore shows a link be-
tween the collective performance and the individual cognitive abilities 
in terms of both environmental sampling and social interactions.

The simplicity of our approach is one of its strengths because it 
reduces the complexity both at the individual level, granting a wider 
applicability, and at the group level, allowing a better understanding 
of the emergent dynamics. The performance of our behaviors can 
be improved by increasing the requirements at the individual level. 
Robots capable of storing probabilities on multiple opinions and 
updating them recursively could improve the accuracy and speed of 
collective decisions (12, 13, 15, 16). Recent theoretical analysis has 
also shown that distributed learning by computationally more 
demanding agents can benefit from limited communication (79). It 
will be interesting to test how the same mechanism can be applied 
to a robot swarm. The exploration of the environment could also be 
made more efficient by replacing the diffusive random walk with 
more elaborated collective search strategies (80, 81) that, for exam-
ple, use Lévy walks and larger individual memory (82) or include a 
constant probability to return to a site and reestimate its quality 
(83). Furthermore, we can envision that the use of a time-varying 
communication range—varied by individual robots that increase 
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and decrease it depending on how old or recent their environmental 
information is—could further improve the collective behavior. Such 
a solution could exploit the benefits of both a quick consensus by 
highly connected individuals and effective adaptation to environ-
mental changes by individuals that reduce their response to social 
influence when they have recent information. Temporarily exploit-
ing more knowledgeable individuals by modifying the communica-
tion network is an effective strategy that provides adaptive benefits 
in animal groups (84, 85) and could be “exported” to engineered solu-
tions. However, even without such refinements, a simple strategy of less 
is more allows for sophisticated group adaptation in time-varying 
environments.

MATERIALS AND METHODS
Formalization of collective adaptation in a  
time-varying environment
The robot swarm operates in an environment E that is a plane with 
n target sites that can vary over time. A target site Ti is characterized 
by its location Li ∈ E and its quality qi ∈ [0,1]. When Li is within the 
robot’s sensing range re, the robot can individually estimate the site’s 
quality ​​​   q ​​ i​​  ∼  N(​q​ i​​, ​​ q​​)​ with noise q, truncated to line in the in-
terval [0,1]. We investigate three types of sudden and instantaneous 
environmental changes: First, a new site appears with a higher quality 
than any other site in the environment; second, the best site dis-
appears; or third, the best and the second-best sites switch their 
quality. The robot swarm is tasked to react to these changes and to 
always converge to a consensus in favor of the currently best target 
site in the environment. We consider the swarm to have adapted to 
the best site Ti when the average size of subpopulation Si committed 
to Ti in the last 5000 temporal steps is above the quorum of 80%. We 
choose this metric to avoid counting random fluctuations as deci-
sions (see text ST9) because this could impair the subsequent phase 
of decentralized measuring of the decision state (86–88).

Individual behavior for a collective response
Robots combine environmental exploration with social interactions 
to reach agreement with others on the best site. Each robot uses the 
information that it obtained through exploration and interactions 
to iteratively update its commitment state—every 2 s—through the 
finite state machines of Fig. 2. Robots in any commitment state 
explore the environment, except for the robots in the polling state, 
which move toward the site that they have been recruited to.

Environmental exploration is implemented through random 
diffusion on the plane E to allow robots to both discover target sites 
and change their interaction neighborhood. Agent mobility is 
important because limited mobility can jeopardize the ability to 
reach a consensus (28, 89, 90). In the Kilobots, we implemented the 
random diffusion via the random waypoint mobility model (see 
further details in text ST2) (91).

Social interactions consist of the exchange of messages between 
neighboring robots that are within the range of communication rs. 
Robots committed to site Ti send their message every 500 ms with 
probability equal to the estimated quality ​​​   q ​​ i​​​. The message only con-
tains the location Li of the site Ti but not ​​​   q ​​ i​​​. Therefore, robots that 
receive a recruitment message and change their commitment state 
do not know the value of ​​​   q ​​ i​​​. These robots change their state to 
polling during which they do not communicate because they lack 
information about the site’s quality. Polling robots move through a 

biased random walk toward the most frequently voted site. Once 
the target site is reached, they estimate ​​​   q ​​ i​​​, change their state to com-
mitted, and start to periodically broadcast their vote message 
(Fig.  2C). Therefore, both polling and committed robots have an 
opinion in favor of one site; however, the former do not broadcast 
their opinion, whereas the latter do. We differentiate these two states 
in terms of individual behavior, as shown in Fig. 2A; however, we 
count both populations when measuring the collective opinion and 
swarm consensus.

Adaptability is obtained by allowing robots to integrate in-
formation from the environment after they have committed to a 
site. The robot changes its commitment in favor of the site Ti, that it 
finds through exploration, with probability ​d  ∝ ​​    q ​​ i​​​. The relation-
ship between the probability d and the site’s quality ​​​   q ​​ i​​​ favors the 
selection of the best site and is determined by the function ​f(​​   q ​​ i​​)​, 
which, in our experiments, we set as ​f(​​   q ​​ i​​ ) = ​​   q ​​ i​​​, as ​​​   q ​​ i​​  ∈  [0, 1]​. Through 
the compare rule, a robot committed to Tj makes this probabilistic 
change of commitment only if the last encountered site’s quality ​​​   q ​​ i​​​ 
is better than ​​​   q ​​ j​​​, i.e., ​​​   q ​​ i​​  > ​​    q ​​ j​​ + ϵ​. The parameter ϵ sets the mini-
mum difference for which adaptation is worthwhile (see fig. S1A) 
because changing consensus may have a cost (64). Therefore, the 
resulting probability of committing to the newly discovered site 
Ti is ​d  =  f(​​   q ​​ i​​) H(​​   q ​​ i​​ + ϵ − ​​   q ​​ j​​)​, where H is the Heaviside step func-
tion. Through the resample rule, instead, a committed robot con-
siders newly discovered environmental information with a constant 
probability . Therefore, when a committed robot encounters the 
site Ti, the total probability of committing to it is ​d  =   f(​​   q ​​ i​​)​. The 
probability term  balances the trade-off between a large stable 
consensus and the ability to react to changes (see fig. S1B). A 
small  value makes the robots’ use of environmental information 
rare, whereas a high  value makes the swarm more undecided and 
the consensus subject to large fluctuations.

Kilobot augmented reality experiments
Kilobots are simple robots widely used for studies of collective ro-
botics and swarm intelligence (19, 59, 62, 92–94). Kilobots move on 
a plane by modulating the vibration frequency of two motors. The 
robot moves forward at a speed of about v = 1 cm/s and rotates at 
about 40°/s. The robots communicate with one another via infrared 
messages of 9 bytes. The maximum communication range is about 
rs = 10 cm. Last, the Kilobot has a multicolor light-emitting diode 
light to show us its internal state, which, in our case, is its commit-
ment. The Kilobots’ capabilities are increased by the Augmented 
Reality for Kilobot (ARK) system (95) that is described in text ST10.

In our experiments, the Kilobots are augmented via two virtual 
sensors: a position and a site sensor. Through the position virtual 
sensor (see implementation details in text ST11), polling robots use 
their location and orientation to effectively move to the target sites 
they want to estimate. Robots also use the position sensor to per-
form random waypoint exploration and to avoid collisions with the 
boundary walls. Although we resort to the position sensor, efficient 
robot navigation can also be attained with other methods that do 
not rely on any global positioning system, such as social odometry 
(96) or self-organized navigation (97). Through the site virtual sen-
sor, instead, robots estimate the site’s quality ​​​   q ​​ i​​  ∼  N(​q​ i​​, ​​ q​​)​ when 
the site’s location is within the perception range re = 0.2 m of the 
robot’s virtual sensor. When the quality estimate is outside the sensing 
range [0,1], the estimate ​​​   q ​​ i​​​ is set to the nearest boundary value. 
Whereas in local communication experiments (rs = 10 cm), robots 
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exchange messages via an onboard infrared transreceiver, in the 
experiments with the global communication range, the Kilobots are 
also equipped with a virtual transreceiver to exchange messages 
with the entire swarm as illustrated in detail in text ST12.

Simulators
We analyzed the effect of the various parameters of the system 
through simulations at two levels of abstraction: self-propelled par-
ticles and accurate physics-based models. In the former, robots are 
modeled as point-size agents that move in a two-dimensional space 
with periodic boundary conditions. Movement and communication 
are synchronous and noiseless, rotation in place is instantaneous, 
and collisions are not taken into consideration. The multiagent simu-
lation is not tailored to the specific robotic platform that we use, the 
Kilobot, but rather describes a generic and simplified agent with 
capabilities equivalent to our robots. The physics-based simulation, 
instead, accurately simulates the Kilobot’s sensors and actuators, as 
well as collision and friction between embodied robots. The Kilobots 
and the ARK systems are both simulated through a dedicated plug-
in for ARGoS (98), which is a fast and accurate simulator for swarm 
robotics. ARGoS has been configured to simulate noise in motion 
and communication that quantitatively matches with the noise of 
the real Kilobots (98). In addition, ARGoS uses the identical code 
that runs on the robot, which improves the fidelity of the simula-
tions and facilitates testing and development. All simulation and 
robot code are available with the paper (99).

Implementing the same behavior at two or more levels of ab-
straction is the best practice for the analysis of collective systems. 
Collective systems are typically difficult to model and fully under-
stand. The effect of certain parameters on swarm dynamics can be 
counterintuitive (as this study shows), and modeling assumptions 
may hide emerging patterns (as for infinite-size approximations, 
for example). Therefore, the implementation of the same behavior 
at various levels of complexity can help in the understanding of the 
system and the generality of the obtained results.

Experimental setup
We conducted a series of experiments to understand the robot swarm 
behavior and validate the modeling results. Experiments in simulation 
used parameters that agree with the real counterpart tested with the 
Kilobots (e.g., motion speed v = 1 cm/s, environment size E = 1 × 1 m 2, 
sensing range re = 20 cm, and communication range rs = 10 cm). All 
parameters are indicated and discussed in text ST13; here, for com-
pleteness, we only briefly report an overview of the parameters and 
their values. The environment includes n = 3 target sites with qual-
ity {qx, qy, qz} = {0.8,0.7,0.1} for multiagent simulations and {qx, qy, 
qz} = {0.8,0.6,0.4} for robot experiments, if not indicated otherwise. 
In both multiagent simulations and robot experiments, noise in in-
dividual estimates is relatively high: q = 0.1 (see inset of Fig. 1B). 
Exploration rules’ parameters are ϵ = 0.05 and  = 0.01 for the compare 
and resample rule, respectively. In the multiagent simulations, the 
three events of appearance, disappearance, and quality exchange have 
been studied in isolation with dedicated experiments. Instead, the robot 
experiments are long demonstrations (80 min; Fig. 5) comprising three 
phases, in each of which an environmental change occurs (see text ST13).

Dynamical systems analysis
The collective behaviors that we investigate in this study comprise 
one exploration rule among compare and resample and one social 

interaction pattern among direct switching and the cross-inhibition. 
The combination of exploration rules and social interaction pat-
terns led to four distinct, yet related, systems of ODEs that describe 
the behavior of the robots. The ODE systems describe the macro-
scopic dynamics of swarm subpopulations committed to the differ-
ent sites. In text ST14, we formulate a system of ODEs for each of 
the four investigated behaviors. These models substantially simplify 
when describing the collective adaptation process. The simpler 
models allow us to compute the bifurcation point as a function of 
the system’s parameters, as detailed in text ST15. Here, we report 
the simplified models that describe the adaptation process.

Let S be the swarm size. Let x and y be the fraction of robots 
committed to the new best and the previously best target sites, with 
quality qx and qy, respectively. Also, let z be the fraction of polling 
robots. Our system has finite size (that is, a constant number of 
robots); therefore, we have x + y + z = 1 for the cross-inhibition 
patterns and x + y = 1 for the direct-switching pattern (as z = 0). 
This implies that, in case of adaptation, the dynamics reduces to one 
dimension in case of direct switching and to two dimensions for 
cross-inhibition. In particular,

For compare rule with direct switching

	​​ x ̇ ​  =  k  ​r​e​ 
2​ ​q​ x​​ y + ​ 

k  ​r​s​ 
2​ S y
 ─ 

1 + k  ​r​s​ 
2​ S y

 ​ ​q​ x​​ x − ​  k  ​r​s​ 
2​ S x ─ 

1 + k  ​r​s​ 
2​ S x

 ​ ​q​ y​​ y​	 (1)

For compare rule with cross-inhibition

	​​  
​x ̇ ​  =  k  ​r​e​ 

2​ ​q​ x​​ y +  ​  k  ​r​s​ 
2​ S z ─ 

1 + k  ​r​s​ 
2​ S z

 ​ ​q​ x​​ x − ​  k  ​r​s​ 
2​ S x ─ 

1 + k  ​r​s​ 
2​ S x

 ​ ​q​ y​​ y
​     

​  y ̇ ​  =  − k  ​r​e​ 
2​ ​q​ x​​ y +  ​  k  ​r​s​ 

2​ S z ─ 
1 + k  ​r​s​ 

2​ S z
 ​ ​q​ y​​ y − ​ 

k  ​r​s​ 
2​ S y
 ─ 

1 + k  ​r​s​ 
2​ S y

 ​ ​q​ x​​ x
​​	 (2)

For resample rule with direct switching

                  ​​
​x ̇ ​ = k π ​r​e​ 

2​ α ​q​ x​​ y − k π ​r​e​ 
2​ α ​q​ y​​ x + ​ 

k π ​r​s​ 
2​ Sy
 ─ 

1 + k π ​r​s​ 
2​ Sy

 ​ ​q​ x​​ x
​   

− ​  k π ​r​s​ 
2​ Sx ─ 

1 + k π ​r​s​ 
2​ Sx

 ​ ​q​ y​​ y
  ​​	 (3)

For resample rule with cross-inhibition

	
​​

​x ̇ ​  =  kπ ​r​e​ 
2​ α ​q​ x​​ y − kπ ​r​e​ 

2​ α ​q​ y​​ x + γ ​  kπ ​r​s​ 
2​ Sz ─ 

1 + kπ ​r​s​ 
2​ Sz

 ​ ​q​ x​​ x

​   
−  ​  kπ ​r​s​ 

2​ Sx ─ 
1 + kπ ​r​s​ 

2​ Sx
 ​ ​q​ y​​ y

​   
​y ̇ ​  =  kπ ​r​e​ 

2​ α ​q​ y​​ x − kπ ​r​e​ 
2​ α ​q​ x​​ y + γ ​  kπ ​r​s​ 

2​ Sz ─ 
1 + kπ ​r​s​ 

2​ Sz
 ​ ​q​ y​​ y
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kπ ​r​s​ 

2​ Sy
 ─ 

1 + kπ ​r​s​ 
2​ Sy

 ​ ​q​ x​​ x

  ​​	 (4)

In these equations,  is a proportionality constant representing 
the rate at which committed robots resample;  is the proportion of 
polling robots that get committed to a target site; and k is a propor-
tionality constant for the probability per unit time of a robot 

 at S
H

E
F

F
IE

LD
 U

N
IV

E
R

S
IT

Y
 on A

ugust 3, 2021
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

http://robotics.sciencemag.org/


Talamali et al., Sci. Robot. 6, eabf1416 (2021)     28 July 2021

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

12 of 14

encountering a target site or being in communication range with 
another robot. These probabilities can be expressed as ​​P​ e​​  =  k  ​r​e​ 

2​​ 
and ​​P​ m​​  =  k  ​r​s​ 

2​​, respectively. In our model, the proportionality con-
stant k depends on factors such as the speed of motion of the robots 
and their movement patterns and is indicative of the speed of the 
collective dynamics. Full details on the derivation and analysis of the 
models are available in texts ST14 to ST16; we also include with the 
paper a Jupyter notebook to reproduce our analytical results (99).

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/6/56/eabf1416/DC1
Movies S1 and S2
Texts ST1 to ST16
Algorithm S1
Figs. S1 to S6
References (102, 103)

REFERENCES AND NOTES
	 1.	 H. Hamann, Swarm Robotics: A Formal Approach (Springer International Publishing, 

2018).
	 2.	 G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full, N. Jacobstein, V. Kumar, 

M. McNutt, R. Merrifield, B. J. Nelson, B. Scassellati, M. Taddeo, R. Taylor, M. Veloso, Z. L. Wang, 
R. Wood, The grand challenges of Science Robotics. Sci. Robot. 3, eaar7650 (2018).

	 3.	 C. Torney, Z. Neufeld, I. D. Couzin, Context-dependent interaction leads to emergent 
search behavior in social aggregates. Proc. Natl. Acad. Sci. U.S.A. 106, 22055–22060 (2009).

	 4.	 I. C. Yasa, H. Ceylan, U. Bozuyuk, A.-M. Wild, M. Sitti, Elucidating the interaction dynamics 
between microswimmer body and immune system for medical microrobots. Sci. Robot. 5, 
eaaz3867 (2020).

	 5.	 N. T. Jafferis, E. F. Helbling, M. Karpelson, R. J. Wood, Untethered flight of an insect-sized 
flapping-wing microscale aerial vehicle. Nature 570, 491–495 (2019).

	 6.	 M. Gauci, J. Chen, W. Li, T. J. Dodd, R. Groß, Self-organized aggregation without 
computation. Int. J. Robot. Res. 33, 1145–1161 (2014).

	 7.	 A. Özdemir, M. Gauci, S. Bonnet, R. Groß, Finding consensus without computation.  
IEEE Robot. Autom. Lett. 3, 1346–1353 (2018).

	 8.	 G. Valentini, E. Ferrante, M. Dorigo, The best-of-n problem in robot swarms: 
Formalization, state of the art, novel perspectives. Front. Robot. AI 4, 9 (2017).

	 9.	 R. Gray, A. Franci, V. Srivastava, N. E. Leonard, Multiagent decision-making dynamics 
inspired by honeybees. IEEE Trans. Control. Netw. Syst. 5, 793–806 (2018).

	 10.	 M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: A review 
from the swarm engineering perspective. Swarm Intell. 7, 1–41 (2013).

	 11.	 A. Reina, J. A. R. Marshall, V. Trianni, T. Bose, Model of the best-of-N nest-site selection 
process in honeybees. Phys. Rev. E 95, 052411 (2017).

	 12.	 C. Lee, J. Lawry, A. F. T. Winfield, Combining opinion pooling and evidential updating for 
multi-agent consensus, in IJCAI International Joint Conference on Artificial Intelligence 
(IJCAI, 2018), vol. 1, pp. 347–353.

	 13.	 C. Lee, J. Lawry, A. F. T. Winfield, Negative updating combined with opinion pooling in the 
best-of-n problem in swarm robotics, in Swarm Intelligence, 11th International Conference, 
ANTS 2018 , vol. 11172 of Lecture Notes in Computer Science (Springer, 2018), pp. 97–108.

	 14.	 A. Scheidler, A. Brutschy, E. Ferrante, M. Dorigo, The k-unanimity rule for self-organized 
decision-making in swarms of robots. IEEE Trans. Cybern. 46, 1175–1188 (2016).

	 15.	 J. Lawry, M. Crosscombe, D. Harvey, Epistemic sets applied to best-of-n problems, in 
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, G. Kern-Isberner, 
Z. Ognjanović, Eds. (Springer International Publishing, 2019), pp. 301–312.

	 16.	 M. Crosscombe, J. Lawry, P. Bartashevich, Evidence propagation and consensus 
formation in noisy environments, in Scalable Uncertainty Management, N. Ben Amor, 
B. Quost, M. Theobald, Eds. (Springer International Publishing, 2019), pp. 310–323.

	 17.	 A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo, V. Trianni, A design pattern 
for decentralised decision making. PLOS ONE 10, e0140950 (2015).

	 18.	 M. S. Talamali, J. A. R. Marshall, T. Bose, A. Reina, Improving collective decision accuracy 
via time-varying cross-inhibition, in Proceedings of the 2019 IEEE International Conference 
on Robotics and Automation (ICRA 2019) (IEEE, 2019), pp. 9652–9659.

	 19.	 G. Valentini, E. Ferrante, H. Hamann, M. Dorigo, Collective decision with 100 Kilobots: 
Speed versus accuracy in binary discrimination problems. Auton. Agents Multi Agent Syst. 
30, 553–580 (2016).

	 20.	 J. Prasetyo, G. De Masi, E. Ferrante, Collective decision making in dynamic environments. 
Swarm Intell. 13, 217–243 (2019).

	 21.	 M. D. Soorati, M. Krome, M. Mora-Mendoza, J. Ghofrani, H. Hamann, Plasticity in collective 
decision-making for robots: Creating global reference frames, detecting dynamic 

environments, and preventing lock-ins, in 2019 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS) (IEEE, 2019), pp. 4100–4105.

	 22.	 J. Prasetyo, G. De Masi, P. Ranjan, E. Ferrante, The best-of-n problem with dynamic 
site qualities: Achieving adaptability with stubborn individuals, in Swarm Intelligence 
(ANTS 2018), vol. 11172 of Lecture Notes in Computer Science (Springer, 2018), 
pp. 239–251.

	 23.	 Y. Khaluf, P. Simoens, H. Hamann, The neglected pieces of designing collective 
decision-making processes. Front. Robot. AI 6, 16 (2019).

	 24.	 A. M. Hein, B. T. Martin, Information limitation and the dynamics of coupled ecological 
systems. Nat. Ecol. Evol. 4, 82–90 (2020).

	 25.	 R. A. Holley, T. M. Liggett, Ergodic theorems for weakly interacting infinite systems 
and the voter model. Ann. Probab. 3, 643–663 (1975).

	 26.	 D. Pais, P. M. Hogan, T. Schlegel, N. R. Franks, N. E. Leonard, J. A. R. Marshall, A mechanism 
for value-sensitive decision-making. PLOS ONE 8, e73216 (2013).

	 27.	 T. D. Seeley, P. K. Visscher, T. Schlegel, P. M. Hogan, N. R. Franks, J. A. R. Marshall, Stop 
signals provide cross inhibition in collective decision-making by honeybee swarms. 
Science 335, 108–111 (2012).

	 28.	 A. Reina, T. Bose, V. Trianni, J. A. R. Marshall, Effects of spatiality on value-sensitive 
decisions made by robot swarms, in Proceedings of the 13th International Symposium on 
Distributed Autonomous Robotic Systems (DARS2016) (Springer, 2018), vol. 6 of STAR, 
pp. 461–473.

	 29.	 J. A. R. Marshall, R. Bogacz, A. Dornhaus, R. Planqué, T. Kovacs, N. R. Franks, On optimal 
decision-making in brains and social insect colonies. J. R. Soc. Interface 6, 1065–1074 
(2009).

	 30.	 T. Biancalani, L. Dyson, A. J. McKane, Noise-induced bistable states and their mean 
switching time in foraging colonies. Phys. Rev. Lett. 112, 038101 (2014).

	 31.	 Y. Khaluf, C. Pinciroli, G. Valentini, H. Hamann, The impact of agent density on scalability 
in collective systems: Noise-induced versus majority-based bistability. Swarm Intell. 11, 
155–179 (2017).

	 32.	 Y. Khaluf, A. Reina, T. Bose, J. A. R. Marshall, Agent density in collective decisions (2019); 
https://github.com/DiODeProject/MuMoT/blob/master/DemoNotebooks/Agent_density.
ipynb [accessed 7 October 2020].

	 33.	 K. Elamvazhuthi, S. Berman, Mean-field models in swarm robotics: A survey. Bioinspir. 
Biomim. 15, 015001 (2019).

	 34.	 V. Sood, T. Antal, S. Redner, Voter models on heterogeneous networks. Phys. Rev. E 77, 
041121 (2008).

	 35.	 Y. Shang, R. Bouffanais, Influence of the number of topologically interacting neighbors 
on swarm dynamics. Sci. Rep. 4, 4184 (2015).

	 36.	 I. Rausch, A. Reina, P. Simoens, Y. Khaluf, Coherent collective behaviour emerging 
from decentralised balancing of social feedback and noise. Swarm Intell. 13, 321–345 
(2019).

	 37.	 C. Gershenson, D. Helbing, When slower is faster. Complexity 21, 9–15 (2015).
	 38.	 L. B. Slobodkin, Growth and Regulation of Animal Populations (Holt, Rinehart and Winston, 

1961).
	 39.	 H.-U. Stark, C. J. Tessone, F. Schweitzer, Decelerating microdynamics can accelerate 

macrodynamics in the voter model. Phys. Rev. Lett. 101, 018701 (2008).
	 40.	 H.-U. Stark, C. J. Tessone, F. Schweitzer, Slower is faster: Fostering consensus formation 

by heterogeneous inertia. Adv. Complex Syst. 11, 551–563 (2008).
	41.	 P. Rahmani, F. Peruani, P. Romanczuk, Flocking in complex environments—

Attention trade-offs in collective information processing. PLoS Comput. Biol. 16, 
e1007697 (2020).

	 42.	 M. M. G. Sosna, C. R. Twomey, J. Bak-Coleman, W. Poel, B. C. Daniels, P. Romanczuk, 
I. D. Couzin, Individual and collective encoding of risk in animal groups. Proc. Natl. Acad. 
Sci. U.S.A. 116, 20556–20561 (2019).

	 43.	 C. A. C. Parker, H. Zhang, Biologically inspired decision making for collective robotic 
systems, in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 
(IEEE Cat. No.04CH37566) (IEEE, 2004), vol. 1, pp. 375–380.

	 44.	 C. A. C. Parker, H. Zhang, Cooperative decision-making in decentralized multiple-robot 
systems: The best-of-N problem. IEEE ASME Trans. Mechatron. 14, 240–251 (2009).

	 45.	 N. R. Franks, S. C. Pratt, E. B. Mallon, N. F. Britton, D. J. T. Sumpter, Information flow, 
opinion polling and collective intelligence in house-hunting social insects. Philos. Trans. 
R. Soc. Lond. B Biol. Sci. 357, 1567–1583 (2002).

	 46.	 R. Jeanson, A. Dussutour, V. Fourcassié, Key factors for the emergence of collective 
decision in invertebrates. Front. Neurosci. 6, 121 (2012).

	 47.	 G. Valentini, H. Hamann, M. Dorigo, Self-organized collective decision making: The 
weighted voter model, in Proceedings of the 2014 International Conference on Autonomous 
Agents and Multi-Agent Systems (AAMAS) (International Foundation for Autonomous 
Agents and Multiagent Systems, 2014), pp. 45–52.

	 48.	 N. Stroeymeyt, E. J. H. Robinson, P. M. Hogan, J. A. R. Marshall, M. Giurfa, N. R. Franks, 
Experience-dependent flexibility in collective decision making by house-hunting ants. 
Behav. Ecol. 22, 535–542 (2011).

 at S
H

E
F

F
IE

LD
 U

N
IV

E
R

S
IT

Y
 on A

ugust 3, 2021
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

http://robotics.sciencemag.org/cgi/content/full/6/56/eabf1416/DC1
https://github.com/DiODeProject/MuMoT/blob/master/DemoNotebooks/Agent_density.ipynb
https://github.com/DiODeProject/MuMoT/blob/master/DemoNotebooks/Agent_density.ipynb
http://robotics.sciencemag.org/


Talamali et al., Sci. Robot. 6, eabf1416 (2021)     28 July 2021

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

13 of 14

	 49.	 W. Liu, A. F. T. Winfield, J. Sa, J. Chen, L. Dou, Towards energy optimization: Emergent task 
allocation in a swarm of foraging robots. Adapt. Behav. 15, 289–305 (2007).

	 50.	 E. J. H. Robinson, N. R. Franks, S. Ellis, S. Okuda, J. A. R. Marshall, A simple threshold rule 
is sufficient to explain sophisticated collective decision-making. PLOS ONE 6, e19981 
(2011).

	 51.	 E. J. H. Robinson, O. Feinerman, N. R. Franks, How collective comparisons emerge 
without individual comparisons of the options. Proc. R. Soc. Lond. B Biol. Sci. 281, 
20140737 (2014).

	 52.	 P. L. Krapivsky, S. Redner, Dynamics of majority rule in two-state interacting spin systems. 
Phys. Rev. Lett. 90, 238701 (2003).

	 53.	 K. Lerman, A. Martinoli, A. Galstyan, A review of probabilistic macroscopic models for 
swarm robotic systems, in Swarm Robotics (SR 2004), E. Şahin, W. M. Spears, Eds.,  
vol. 3342 of Lecture Notes in Computer Science (Springer, 2005), pp. 143–152.

	 54.	 M. A. Hsieh, Á. Halász, S. Berman, V. Kumar, Biologically inspired redistribution of a swarm 
of robots among multiple sites. Swarm Intell. 2, 121–141 (2008).

	 55.	 A. Reina, R. Miletitch, M. Dorigo, V. Trianni, A quantitative micro-macro link for collective 
decisions: The shortest path discovery/selection example. Swarm Intell. 9, 75–102 (2015).

	 56.	 L. A. Real, The kinetics of functional response. Am. Nat. 111, 289–300 (1977).
	 57.	 A. Cornish-Bowden, One hundred years of Michaelis-Menten kinetics. Perspect. Sci. 4, 3–9 

(2015).
	 58.	 R. Gesztelyi, J. Zsuga, A. Kemeny-Beke, B. Varga, B. Juhasz, A. Tosaki, The Hill equation 

and the origin of quantitative pharmacology. Arch. Hist. Exact Sci. 66, 427–438 (2012).
	 59.	 M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, R. Nagpal, Kilobot: A low cost robot 

with scalable operations designed for collective behaviors. Rob. Auton. Syst. 62, 966–975 
(2014).

	 60.	 A. Pirrone, H. Azab, B. Y. Hayden, T. Stafford, J. A. R. Marshall, Evidence for the speed-value 
trade-off: Human and monkey decision making is magnitude sensitive. Decision 5, 
129–142 (2018).

	 61.	 A. Dussutour, Q. Ma, D. J. T. Sumpter, Phenotypic variability predicts decision accuracy 
in unicellular organisms. Proc. R. Soc. Lond. B Biol. Sci. 286, 20182825 (2019).

	 62.	 M. S. Talamali, T. Bose, M. Haire, X. Xu, J. A. R. Marshall, A. Reina, Sophisticated collective 
foraging with minimalist agents: A swarm robotics test. Swarm Intell. 14, 25–56 (2020).

	 63.	 A. Pirrone, T. Stafford, J. A. R. Marshall, When natural selection should optimize 
speed-accuracy trade-offs. Front. Neurosci. 8, 73 (2014).

	 64.	 S. C. Nicolis, N. Zabzina, T. Latty, D. J. T. Sumpter, Collective irrationality and positive 
feedback. PLOS ONE 6, e18901 (2011).

	 65.	 A. E. Turgut, C. Huepe, H. Çelikkanat, F. Gökçe, E. Şahin, Modeling phase transition in 
self-organized mobile robot flocks, in Ant Colony Optimization and Swarm Intelligence, 
M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A. F. T. Winfield, Eds. , vol. 5217 of 
Lecture Notes in Computer Science (Springer, 2008), pp. 108–119.

	 66.	 I. Rausch, P. Simoens, Y. Khaluf, Adaptive foraging in dynamic environments using 
scale-free interaction networks. Front. Robot. AI 7, 86 (2020).

	 67.	 T. Latty, M. Beekman, Keeping track of changes: The performance of ant colonies 
in dynamic environments. Anim. Behav. 85, 637–643 (2013).

	 68.	 T. J. Czaczkes, B. Czaczkes, C. Iglhaut, J. Heinze, Composite collective decision-making. 
Proc. R. Soc. Lond. B Biol. Sci. 282, 20142723 (2015).

	 69.	 F. Arvin, A. E. Turgut, F. Bazyari, K. B. Arikan, N. Bellotto, S. Yue, Cue-based aggregation 
with a mobile robot swarm: A novel fuzzy-based method. Adapt. Behav. 22, 189–206 
(2014).

	 70.	 I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin, Effective leadership and decision-making 
in animal groups on the move. Nature 433, 513–516 (2005).

	 71.	 D. Centola, J. Becker, D. Brackbill, A. Baronchelli, Experimental evidence for tipping points 
in social convention. Science 360, 1116–1119 (2018).

	 72.	 E. Ferrante, A. E. Turgut, C. Huepe, A. Stranieri, C. Pinciroli, M. Dorigo, Self-organized 
flocking with a mobile robot swarm: A novel motion control method. Adapt. Behav. 20, 
460–477 (2012).

	 73.	 J. Fernández-Gracia, K. Suchecki, J. J. Ramasco, M. San Miguel, V. M. Eguíluz, Is the voter 
model a model for voters? Phys. Rev. Lett. 112, 158701 (2014).

	 74.	 J. Jhawar, R. G. Morris, U. R. Amith-Kumar, M. Danny Raj, T. Rogers, H. Rajendran, V. Guttal, 
Noise-induced schooling of fish. Nat. Phys. 16, 488–493 (2020).

	 75.	 T. Zillio, I. Volkov, J. R. Banavar, S. P. Hubbell, A. Maritan, Spatial scaling in model plant 
communities. Phys. Rev. Lett. 95, 098101 (2005).

	 76.	 A. Dornhaus, N. R. Franks, R. M. Hawkins, H. N. S. Shere, Ants move to improve: Colonies 
of Leptothorax albipennis emigrate whenever they find a superior nest site. Anim. Behav. 
67, 959–963 (2004).

	 77.	 T. Sasaki, S. C. Pratt, Emergence of group rationality from irrational individuals. Behav. Ecol. 
22, 276–281 (2011).

	 78.	 A. L. Cronin, Fussy groups thwart the collective burden of choice: A theoretical study 
of house-hunting ants. J. Theor. Biol., 110000 (2019).

	 79.	 U. Madhushani, N. E. Leonard, Distributed learning: Sequential decision making in 
resource-constrained environments. arXiv:2004.06171 (2020).

	 80.	 R. K. Ramachandran, Z. Kakish, S. Berman, Information correlated Lévy walk exploration 
and distributed mapping using a swarm of robots. IEEE Trans. Robot. 36, 1422–1441 
(2020).

	 81.	 A. Shirsat, K. Elamvazhuthi, S. Berman, Multi-robot target search using probabilistic 
consensus on discrete Markov chains, in 2020 IEEE International Symposium on Safety, 
Security, and Rescue Robotics (SSRR) (IEEE, 2020), pp. 108–115.

	 82.	 J. Nauta, Y. Khaluf, P. Simoens, Hybrid foraging in patchy environments using spatial 
memory. J. R. Soc. Interface 17, 20200026 (2020).

	 83.	 B. Granovskiy, T. Latty, M. Duncan, D. J. T. Sumpter, M. Beekman, How dancing honey 
bees keep track of changes: The role of inspector bees. Behav. Ecol. 23, 588–596 (2012).

	 84.	 N. Stroeymeyt, N. R. Franks, M. Giurfa, Knowledgeable individuals lead collective 
decisions in ants. J. Exp. Biol. 214, 3046–3054 (2011).

	 85.	 N. Pinter-Wollman, R. Wollman, A. Guetz, S. Holmes, D. M. Gordon, The effect of individual 
variation on the structure and function of interaction networks in harvester ants. J. R. Soc. 
Interface 8, 1562–1573 (2011).

	86.	 C. A. C. Parker, H. Zhang, Collective unary decision-making by decentralized 
multiple-robot systems applied to the task-sequencing problem. Swarm Intell. 4, 
199–220 (2010).

	 87.	 S. C. Pratt, E. B. Mallon, D. J. T. Sumpter, N. R. Franks, Quorum sensing, recruitment, 
and collective decision-making during colony emigration by the ant Leptothorax 
albipennis. Behav. Ecol. Sociobiol. 52, 117–127 (2002).

	 88.	 J. R. Cody, K. A. Roundtree, J. A. Adams, Human-collective collaborative target selection. 
ACM Trans. Human-Robot. Interact. 10, 1–29 (2021).

	 89.	 M. Starnini, M. Frasca, A. Baronchelli, Emergence of metapopulations and echo chambers 
in mobile agents. Sci. Rep. 6, 31834 (2016).

	 90.	 W. F. Vining, F. Esponda, M. E. Moses, S. Forrest, How does mobility help distributed 
systems compute? Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180375 (2019).

	 91.	 C. Bettstetter, H. Hartenstein, X. Pérez-Costa, Stochastic properties of the random 
waypoint mobility model. Wirel. Netw. 10, 555–567 (2004).

	 92.	 M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in a thousand-robot 
swarm. Science 345, 795–799 (2014).

	 93.	 I. Slavkov, D. Carrillo-Zapata, N. Carranza, X. Diego, F. Jansson, J. Kaandorp, S. Hauert, 
J. Sharpe, Morphogenesis in robot swarms. Sci. Robot. 3, eaau9178 (2018).

	 94.	 J. T. Ebert, M. Gauci, R. Nagpal, Multi-feature collective decision making in robot swarms, 
in Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent 
Systems (AAMAS, 2018), pp. 1711–1719.

	 95.	 A. Reina, A. J. Cope, E. Nikolaidis, J. A. R. Marshall, C. Sabo, ARK: Augmented reality 
for Kilobots. IEEE Robot. Autom. Lett. 2, 1755–1761 (2017).

	 96.	 Á. Gutiérrez, A. Campo, F. C. Santos, F. Monasterio-Huelin, M. Dorigo, Social odometry: 
Imitation based odometry in collective robotics. Int. J. Adv. Robot. Syst. 6, 11 (2009).

	 97.	 F. Ducatelle, G. A. Di Caro, C. Pinciroli, F. Mondada, L. M. Gambardella, Communication 
assisted navigation in robotic swarms: Self-organization and cooperation, in 2011 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2011), 
pp. 4981–4988.

	 98.	 C. Pinciroli, M. S. Talamali, A. Reina, J. A. R. Marshall, V. Trianni, Simulating Kilobots within 
ARGoS: Models and experimental validation, in Swarm Intelligence (ANTS 2018), vol. 11172 
of Lecture Notes in Computer Science, M. Dorigo, M. Birattari, C. Blum, A. Christensen, 
A. Reina, V. Trianni, Eds. (Springer, 2018), pp. 176–187.

	 99.	 M. S. Talamali, A. Saha, J. A. R. Marshall, A. Reina, Supplementary code for robot, 
simulation, and analysis (2020); https://github.com/DiODeProject/AdaptationStudy.

	100.	 D. Carrillo-Zapata, E. Milner, J. Hird, G. Tzoumas, P. J. Vardanega, M. Sooriyabandara, 
M. Giuliani, A. F. T. Winfield, S. Hauert, Mutual shaping in swarm robotics: User studies 
in fire and rescue, storage organization, and bridge inspection. Front. Robot. AI 7, 53 (2020).

	101.	 V. Trianni, D. De Simone, A. Reina, A. Baronchelli, Emergence of consensus in a multi-
robot network: From abstract models to empirical validation. IEEE Robot. Autom. Lett. 1, 
348–353 (2016).

	102.	 B. Ermentrout, “XPPAUT,” Scholarpedia, vol. 2, no. 1, p. 1399, 2007. revision #136177.
	103.	 A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. T. Kumar, 

S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, 
H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, Š. Roučka, A. Saboo, 
I. Fernando, S. Kulal, R. Cimrman, A. Scopatz, Sympy: Symbolic computing in Python. 
PeerJ Comput. Sci. 3, e103 (2017).

Acknowledgments: We thank M. Port whose technical support has been vital for the success 
of this project. Funding: This project was funded by the European Research Council (ERC) 
under the European Union’s Horizon 2020 research and innovation programme (grant agreement 
number 647704) and by the Office of Naval Research Global (ONRG) under grant number 12547352. 
A.R. also acknowledges funding by the Belgian F.R.S.-FNRS, of which he is a Chargé de 
Recherches. Author contributions: M.S.T. and A.R. conceived the original idea. M.S.T. and A.R. 
implemented the multiagent simulator and the robot control code and conducted the robot 
experiments. M.S.T. conducted the simulation experiments. A.S. performed the dynamical 

 at S
H

E
F

F
IE

LD
 U

N
IV

E
R

S
IT

Y
 on A

ugust 3, 2021
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

https://arxiv.org/abs/2004.09581
https://github.com/DiODeProject/AdaptationStudy
http://robotics.sciencemag.org/


Talamali et al., Sci. Robot. 6, eabf1416 (2021)     28 July 2021

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

14 of 14

system modeling and analysis. A.R. directed the project. All authors interpreted results and 
wrote the manuscript. Competing interests: J.A.R.M. is a shareholder in Opteran Technologies 
Limited. The other authors declare that they have no competing interests. Data and materials 
availability: All the code to generate the data reported and discussed is available online on 
GitHub at (99). The 12 videos of the robot experiments are available as movies S1 and S2. All 
data needed to evaluate the conclusions of the paper are available in the paper, the 
Supplementary Materials, or available online at https://doi.org/10.5522/04/c.5478558.

Submitted 7 October 2020
Accepted 28 June 2021
Published 28 July 2021
10.1126/scirobotics.abf1416

Citation: M. S. Talamali, A. Saha, J. A. R. Marshall, A. Reina, When less is more: Robot swarms 
adapt better to changes with constrained communication. Sci. Robot. 6, eabf1416 (2021).

 at S
H

E
F

F
IE

LD
 U

N
IV

E
R

S
IT

Y
 on A

ugust 3, 2021
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

https://doi.org/10.5522/04/c.5478558
http://robotics.sciencemag.org/


communication
When less is more: Robot swarms adapt better to changes with constrained

Mohamed S. Talamali, Arindam Saha, James A. R. Marshall and Andreagiovanni Reina

DOI: 10.1126/scirobotics.abf1416
, eabf1416.6Sci. Robotics 

ARTICLE TOOLS http://robotics.sciencemag.org/content/6/56/eabf1416

MATERIALS
SUPPLEMENTARY http://robotics.sciencemag.org/content/suppl/2021/07/26/6.56.eabf1416.DC1

CONTENT
RELATED 

http://science.sciencemag.org/content/sci/345/6198/795.full
http://robotics.sciencemag.org/content/robotics/3/25/eaau9178.full

REFERENCES

http://robotics.sciencemag.org/content/6/56/eabf1416#BIBL
This article cites 79 articles, 6 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science RoboticsNew York Avenue NW, Washington, DC 20005. The title 
(ISSN 2470-9476) is published by the American Association for the Advancement of Science, 1200Science Robotics 

of Science. No claim to original U.S. Government Works
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement

 at S
H

E
F

F
IE

LD
 U

N
IV

E
R

S
IT

Y
 on A

ugust 3, 2021
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

http://robotics.sciencemag.org/content/6/56/eabf1416
http://robotics.sciencemag.org/content/suppl/2021/07/26/6.56.eabf1416.DC1
http://robotics.sciencemag.org/content/robotics/3/25/eaau9178.full
http://science.sciencemag.org/content/sci/345/6198/795.full
http://robotics.sciencemag.org/content/6/56/eabf1416#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://robotics.sciencemag.org/



