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Abstract. Collective motion modelling has attracted significant atten-
tion for gaining insights into the mechanisms of collective behaviour and
its potential to inspire control strategies for swarm robotics. Most of the
existing models assume that individuals within a group strictly adhere
to the interaction rules. However, individuals in artificial and natural
collectives could occasionally fail to follow the interaction rules, which
is distinct from noisy actions. In this study, we analyse how the pres-
ence of individuals, who occasionally defect, affects the ordered phase
of the group during collective motion. Using Monte Carlo simulations,
we study two collective motion models, a non-spatial (pairwise inter-
action) and a spatial (Couzin) model. In the non-spatial model, when
individuals defect with higher probability, both the time required by the
agents to reach directional consensus (polarised group motion) as well as
the average energy cost of the group to maintain such directional con-
sensus (average rotational energy consumption per individual in highly
polarised groups) increases. In the spatial model, there are conditions
where the presence of defecting agents can simultaneously reduce the
time required by the collective to get highly polarised and the average
energy cost in the polarised state. These findings not only enhance our
understanding of probabilistic defective behaviour in biological systems
but can also inspire innovative, efficient, and controllable approaches in
swarm robotics.
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1 Introduction

Collective motion [46] is a universal phenomenon observed in nature, rang-
ing from macro-molecules [39], to the simplest multicellular organisms [14], in-
sects [37,7], fish [43], birds [4], herds [19], and even humans [34]. Over the past
decades, mathematical models [38,45,13,24] have provided insights into how in-
dividuals, by interacting with their local neighbours, can collectively move in a
coordinated manner. Most of these models assume that every individual adheres
to the rules defined in these models with a certain degree of variability which
is normally included as random noise. While individuals in natural systems,
such as fish shoals or bird flocks, usually adhere to the interaction rules [4,25],
they may also occasionally deviate from that behaviour in ways that are dif-
ferent from noisy actions. For instance, individuals may choose not to interact
and instead take selfish actions to exploit collaboration efforts by their peers
without paying relative social coordination costs [35,11]. Another reason why
certain individuals may occasionally not follow the rules of collective motion is
the fact that individuals have complex behaviours where collective motion is
only one of its components. It is reasonable to assume that animals may concur-
rently forage, look for mates, or avoid dangers and predators; therefore, other
individual goals than motion coordination could prevail in determining animals’
actions [10,47,22,27,12]. Competition can also play a role in causing a temporary
interruption in following collective motion rules [33,30]. We refer to the behaviour
where individuals deviate from the collective motion rules as defection.

There are previous works that modelled intermittent, or occasional, defective
behaviour in a variety of ways. Such studies considered variable frequencies of in-
teraction, i.e., agents always follow the cooperative rules, however, each of them
has a personal frequency of interaction [6,16]. In such an asynchronous interac-
tion system, certain agents update their behaviours (or states) more frequently
than others. Slower agents (with lower interaction frequency) may appear as
defectors to quicker agents that make (unilateral) updates of their behaviour
without a direct response. Other studies considered individuals that selectively
interact only with a subset of neighbours [23]. This research has provided in-
teresting insights into the evolution of cooperation in collective systems [28,29].
Investigating the impact of occasional defection on collective motion remains an
open question [2,48]. In this paper, we study whether having individuals with
a given probability of defection (in our case, defection means ignoring the col-
lective motion rule) can be beneficial for the group, and, if so, what level of
defection maximises the collective benefits. Different from previous studies that
used frequency-based or selective-interaction approaches to model defection at
approximately regular time intervals [41,24], in our models, by introducing a
probability for every agent to defect, we break the periodic patterns of defection
events across the number of time steps.

Considering the impact of defecting agents in decentralised groups can also
be relevant for the design of robotic systems, such as robot swarms [21]. While
robots would be programmed to not defect and always follow the collaborative
rules, their defective behaviour could be the consequence of malfunctioning or
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Fig. 1. (a) Illustration of the collective behaviour of individuals that probabilistically
cooperate by following the collective motion rules or defect by maintaining their original
directions. The pairwise model: (b) A pair of interacting agents in a group of fully
connected agents, (c) Focal agents’ (hollow pink) interaction rule, (d) Mechanism to
update the agent’s strategy (cooperate/defect) via the defection probability PD.

noise. For instance, due to communication failures [31,17], noisy sensory inputs,
and partial observability of the environment, robots may not always follow the
prescribed algorithm [36]. Adversarial tampering is another example where the
robot temporarily under the control of a hacker may behave erratically [3,26].
It is thus important to design algorithms that are robust to occasional defection
by part of the robots, or that would even exploit defective behaviour to improve
certain aspects of the group dynamics. This paper makes an initial step towards
this research direction by analysing in what conditions probabilistic defection
can improve or harm the group dynamics.

To do so, we analyse two prominent collective motion models, the pairwise
model [24] (a non-spatial model) and the Couzin model [13] (a spatially-explicit
model). We extend these two models to include the possibility that agents occa-
sionally defect to investigate how this impacts the group dynamics. At each time
step, an agent defects with probability PD and otherwise cooperates by following
the interaction rules. Figure 1(a) presents a schematic illustration of individuals
defecting in the alignment interaction rule with probability PD = 1/3. That is,
an agent cooperates by aligning its orientation with its neighbours in two-thirds
of the time steps and, instead, in the remaining one-third of time steps, it defects
and maintains its original orientation, ignoring its neighbours. In this study, the
agent’s decision to cooperate or defect is independent of its neighbours’ strategy
and solely based on PD, as illustrated in Fig. 1(d).
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We measure the impact of defecting agents in terms of two metrics, polarisa-
tion time, T , and average energy cost, E, (defined in Sec.2). Polarisation time is
the time the group needs to agree on the direction of motion, i.e., to have most of
the agents aligned in the same direction. The average energy cost is the amount
of energy the agents use to maintain a high level of polarisation (i.e., how much
rotational energy each agent on average consumes to remain aligned in the same
direction). For high levels of defection, the group may be unable to achieve a
sufficient level of motion alignment, or the group may become polarised only for
a short time before returning to a disordered state (unpolarised group).

In Sec. 3, we analyse the non-spatial pairwise model and observe that increas-
ing defection probability PD causes an increase in both polarisation time and
average energy cost. In Sec. 4, we analyse the spatially-explicit Couzin model [13].
While the pairwise model only includes an alignment rule, the Couzin model is
more complex as it comprises three rules. We find that when individuals defect
in certain collective motion rules, as the defection probability increases (up to
a certain point), both the polarisation time and average energy cost decrease.
Note that, in this study, we do not compare the dynamics of the pairwise with
those of the Couzin model since they are too different for a fair comparison,
which is out of the scope of this study.

2 Methods

In the simulation, the agents move at a constant speed v. The kinematic motion
of the agents is implemented using the Dubin’s car model [15] described by

ẋ = v cos(ψ) ,

ẏ = v sin(ψ) ,

ψ̇ = ω . (1)

Here, ẋ and ẏ are the velocities of the agent along each coordinate axis in the
2D plane, and ψ is the yaw (heading) angle of the agent. The turning rate ω, is
constrained by a maximum of ωmax, i.e., |ω| < ωmax. The desired turning rate
for an individual is obtained from the interaction model (Secs. 3 and 4).

Given N agents in a group, we define the group polarisation p(t) and the
group energy cost e(t) at a given time t. Group polarisation p(t) is the average
of the unit velocity vectors v̂i of individual agents i at time t, given by

p(t) =

|
N∑
i=1

v̂i(t)|

N
, (2)

and group energy cost e(t) at time t is measured as the sum of the rotational
energy of each individual, given by

e(t) = −
N∑
i=1

(ωi(t))
2 . (3)
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We perform Monte Carlo simulations [1,18], 100 independent runs for each
condition (set of parameters). Each run lasts tmax = 200 s, with a time step dt =
0.1 sec. We measure the polarisation time T required to achieve a group polari-
sation p(T ) beyond a threshold value p∗ = 0.8, i.e. p(T ) > p∗, and the average
energy cost E per individual after the group gets polarised:

E =
1

N(tmax − T )

tmax∑
t=T

e(t). (4)

The agents move in an unbounded region and, at the start of each run, they
are distributed uniformly at random inside a circular region of radius Rh with
random heading angles. The initial states differed across the 100 different runs
and across each model. In the case of the Couzin model, the same initial states
were used across each type of defection.

3 Defection in the Pairwise Interaction Model

In the pairwise interaction model, the interaction network of the group is fully
connected; hence, every agent can interact with any other agent. We use the
same simulation algorithm of Jhawar et al. [24]. At each time step t, we chose at
random N/2 agents as the focal agents that we pair with the rest of the group
(non-focal agents). Each focal agent i (pink and hollow arrow in Fig. 1(b)) pairs
with another unpaired agent j (thin and green quiver in Fig. 1(b)) chosen at
random, irrespective of their Euclidean distance in space to copy j′s yaw angle,
as shown in Fig. 1(c). Hence, only half of the population, the focal agent group,
change its motion direction (i.e., the rate of change of direction is 0.5, as in [24]).
At every simulation step (dt = 0.1 s), the focal agents are re-sampled and paired
with other random non-focal agents. Mathematically, the desired yaw for a focal
agent is described by:

ψi(t+ 1) =

{
ψj(t), if cooperating
ψi(t), if defecting

. (5)

Hence, the turning rate of a focal agent is described by

ωi =

{
min

(
ψi(t+1)−ψi(t)

dt , ωmax

)
, if cooperating

0, if defecting
. (6)

Under the above setup, we perform Monte Carlo simulations with N = 50
agents. We find that regardless of the defection probability value PD, the group
ultimately gets polarised (i.e., p(T ) > p∗), except when individuals always defect
(hence, for PD = 1 we do not compute polarisation time nor energy cost). Both
polarisation time (Fig. 2(a)) and average energy cost per individual (Fig. 2(b))
increase with increasing PD. Such an increase is much more pronounced for high
defection probabilities, i.e., PD > 0.7.
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Fig. 2. (a) The polarisation time T and (b) the average energy cost E as a function of
the probability to defect (PD) in the pairwise model for N = 50 agents. The simulations
were repeated 100 times per condition. We only report the data when at least 80% of
the 100 simulation runs reached a polarisation greater than p∗ = 0.8. Hence, data for
PD = 1 are omitted as the population does not reach polarisation.

4 Defection in the Couzin Model

In the Couzin model [13], an agent interacts with its neighbours within inter-
action range, therefore the interaction network results from Euclidean distances
between agents. The interaction range is categorised into three zones: the zone
of repulsion (Zr), the zone of orientation (Zo), and the zone of attraction (Za).
Different physical distances and orientations from a focal individual define each
of its zones, as shown in Fig. 3(a). When neighbours are present in the interac-
tion zone, the focal agent interacts by getting attracted, repelled, or orienting
towards its neighbours as long as they are not in the blind zone (α). In this
model, at each simulation step (dt = 0.1 s), every agent acts as a focal agent and
updates its yaw angle as a combination of the interactions in the three zones as:

ψi(t+ 1) =



tan−1
(

1
Nr

dir(t)
)

if Zir ̸= ϕ

tan−1
(

1
No

dio(t)
)

if only Zio ̸= ϕ

tan−1
(

1
Na

dia(t)
)

if only Zia ̸= ϕ

tan−1
(

1
2 (

1
No

dio(t) +
1
Na

dia(t))
)

if both (Zio, Z
i
a) ̸= ϕ

ψi(t) otherwise

. (7)

Here, dir = −
∑
j∈Zr

β̂ij , dio =
∑
j∈Zo

v̂j , and dia =
∑
j∈Za

β̂ij , where the symbol β̂ij

represents a unit vector pointing from the position of focal agent i towards the
position of the neighbour j (in the coordinate system of agent i). The symbols
Nr, No and Na represent the numbers of neighbours present in each zone (Zr,
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Zo and Za, respectively). And v̂ is a unit velocity vector. Hence, the desired ωi
of a focal agent at a given simulation step is obtained by:

ωi =

{
min

(
ψi(t+1)−ψi(t)

dt , ωmax

)
, if i is cooperating

0, if i is defecting
. (8)

(a) Couzins model

Za

Zo

Zr

α

(b) Cooperator (c) D − Zr (d) D − Zo (e) D − Za (f) D − Zall

Fig. 3. (a) Focal agents’ interaction zones in the Couzin model depicting the zone of
orientation (Zo), zone of attraction (Za), zone of repulsion (Zr), and the blind region
(α). Types of defection in the Couzin model: (b) standard Couzin model with repulsion,
orientation, and attraction zones, (c-f) types of defection, white regions indicate no
interaction (i.e., defective interaction) for each interaction zone.

Given the modified Couzin model defined in Eqs.(7) and (8), we perform
Monte Carlo simulations with N = 20 and N = 50 agents using similar pa-
rameter values to the ones used in the seminal work introducing the Couzin
model [13], as indicated in Table 1 in detail. With more agents (N ≫ 50) and
the considered set of parameters (Table 1), the group takes longer than our
simulation time of 200 seconds [9] to transit to the ordered phase, see supple-
mentary [1] for the case of N = 80. In contrast to the pairwise model, we conduct
Monte Carlo simulations by defining defection in four different ways based on
the zones of behavioural interaction: (1) defection only in the zone of repulsion
(D-Zr, Fig. 3(c)), (2) defection only in the zone of orientation (D-Zo, Fig. 3(d)),
(3) defection only in the zone of attraction (D-Za, Fig. 3(e)), and (4) defection
in all the three zones at the same time (D-Zall, Fig. 3(f)).

Table 1. Parameters used in the Couzin model for highly parallel formation

Parameter name Symbol Value Unit
Radius of repulsion Rr 1 units
Radius of orientation Ro 18 units
Radius of attraction Ra 20 units
Linear speed v 5 units/s
Maximum turning rate ωmax π/3 rad/s
Field of invisibility α 0 rad
Radius of home Rh

√
N units
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Fig. 4. Probability of having a polarised group (i.e., p(tmax) > p∗ with p∗ = 0.8) as
a function of the agent’s probability PD to defect. This probability is computed as
the proportion of 100 simulation runs where, at time tmax, the group had polarisation
p(tmax) above p∗ = 0.8. The solid lines are for N = 20, and the dashed lines are for
N = 50. In the results of Figs. 5 and 6, we do not include data for conditions where
the probability of p(tmax) > p∗ is below our cut-off line of 0.8 (dotted horizontal black
line).

First, for each case of N (N = 20 and N = 50), we examine and report the
probability of the group becoming highly polarised by the end of the experiment,
i.e., p(tmax) > p∗. This probability is computed by computing the proportion
of the 100 simulation runs (per condition) that are in a polarised state at time
tmax = 200 s. The results in Fig. 4 show that in the case of defection of typeD−Zr
and D − Za, both groups of N = 20 and N = 50 agents consistently reach high
polarisation levels irrespectively of the defection probability PD, including the
case of PD = 1. However, in the case of D−Zall, the probability of p(tmax) > p∗

stays below our cut-off line set at 0.8 (horizontal dotted grey line) when defection
probabilities are higher than PD > 0.6 for both group sizes. In the case of D−Zo,
the system does not reliably reach a polarised state (p(tmax) < p∗) in 200 seconds
for PD > 0.7 when N = 20 and PD > 0.3 when N = 50. It means the collective
ability to reach a polarised state with defection in zone Zo decreases with an
increasing number of agents.

Figures 5 and 6 show the results of the polarisation time T and the aver-
age energy cost E for simulations of groups of N = 20 and N = 50 agents,
respectively. The analysis of these two metrics shows that there are large dif-
ferences depending on the zone where agents probabilistically defect. For both
group sizes, defection in the orientation zone Zo leads to the negative effects
of an increase in the polarisation time T and higher average energy costs E in
maintaining a polarised state (see panels (e-f) of Figs. 5 and 6). We observe the
opposite trend for defection in the repulsion zone Zr (see panels (g-h) of Figs. 5
and 6, and Table 2) where, for both group sizes, the polarisation time T and
average energy costs E decrease as the defection probability PD increases. This
trend is monotonic in all cases except for E with N = 50, where the minimum
energy cost is for PD = 0.6, see Fig. 6(h) and Table 2. For defection in the at-
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Fig. 5. The polarisation time T and the average energy cost E across four types of
defection for a group of N = 20 agents. The violin plot shows the distribution of values
from 100 simulation runs.

Table 2. Mean µe and standard deviation σe of the average energy cost E for D−Zr,
same data as in Fig. 6(h).

0 10 20 30 40 50 60 70 80 90 100
µe -3.109 -2.648 -2.234 -2.116 -1.877 -1.776 -1.697 -1.775 -2.140 -2.482 -0.595
σe 1.944 1.522 0.82 0.875 0.580 0.536 0.562 0.624 1.028 0.939 0.167

traction zone Za, we find different results for the two considered swarm sizes.
In small swarms, N = 20 in Figs. 5(c-d), the inclusion of defection probability
does not impact T but worsens average energy cost E. Instead, in larger swarms,
N = 50 in Figs. 6(c-d), polarisation time T decreases for moderate values of de-
fection probability PD ≤ 0.3 after plateauing at a constant T . Average energy
cost E improves for PD < 0.3, is minimum at PD = 0.3, and increases for higher
PD (see Table 3). Finally, when agents defect in all three zones Zall, the dynam-
ics are quite complex as they are a combination of the trends we observed in
the three areas. Polarisation time increases for N = 20 and has a minimum at
PD = 0.3 for N = 50 (see Fig. 6(a) and Table 4). Average energy cost E has
opposite trends for N = 20 and N = 50. In the former case, Fig. 5(b) shows a
u-shape trend, with a maximum energy cost for PD = 0.3, and in the latter case,
Fig. 6(b) shows a bell-shape trend with minimum energy cost for PD = 0.3.
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Fig. 6. The polarisation time T and the average energy cost E across four types of
defection for a group of N = 50 agents. The violin plot shows the distribution of values
from 100 simulation runs.

Table 3. Mean µe and standard deviation σe of the average energy cost E for D−Za,
same data as in Fig. 6(d).

0 10 20 30 40 50 60 70 80 90
µe -3.109 -2.586 -2.538 -2.459 -2.595 -2.841 -3.235 -4.021 -5.891 -6.199
σe 1.944 0.769 0.59 0.391 0.371 0.404 0.51 1.294 2.129 0.993

Table 4. Mean µt and standard deviation σt of the polarisation time T for D − Zall,
same data as in Fig. 6(a).

0 10 20 30 40 50 60
µt 5.501 4.773 3.665 3.522 3.877 4.564 7.408
σt 5.713 6.671 3.044 0.482 0.592 0.851 7.167

5 Conclusion

While most of the existing studies on collective motion models assume that indi-
viduals always obey the interaction rules without fail, in real-world natural and
robotic systems agents may defect and not follow the interaction rules for vari-
ous reasons, such as selfish behaviour, intra-group competitions, and adversarial
attacks. In this paper, we introduce probabilistically defecting agents in two—
non-spatial and spatial—models of collective motion: the pairwise model [24]
and the Couzin model [13]. We analyse the impact of probabilistically defecting
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agents on the collective motion dynamics by measuring the polarisation time
T (time needed to reach polarisation p(t) above p∗ = 0.8, p(T ) > p∗) and the
average energy cost E per individual (energy that each agent spends on average
to make rotational movements once the group has reached a highly polarised
state).

Our analysis of the pairwise interaction model shows that both the polarisa-
tion time and the average group energy cost increase with increasing defection
probability. The Couzin model is a spatial model thus we analysed four different
types of defection depending on the region of space where agents occasionally
defect. If agents defect in either the zone of attraction or repulsion, the polari-
sation time reduces with increasing defection probability PD. With defection in
these two zones, the average group energy cost E also has a minimum for defec-
tion probability PD > 0. Differently, for defection in the zone of orientation, any
value of PD > 0 reduces the performance in terms of both polarisation time and
average energy cost. In summary, in the considered spatial model (the Couzin
model), there are conditions (e.g., defection in the repulsion zone only) that can
provide group-level benefits and conditions (e.g., defection in the orientation
zone only) that are harmful to the group. The system dynamics and their rela-
tionship with the investigated control parameters (defection probability, swarm
size, defection zones) are relatively complex. Additional complexity is introduced
in the spatial model by the possibility of agents splitting into subgroups moving
in different directions with local polarisation in each subgroup.

Future research is needed to characterise better the causal relationship be-
tween defecting in certain zones and the resulting group dynamics, as well as
how this potentially changes with the group size. For example, we hypothe-
sise that measuring and controlling the density of defecting agents inside each
interaction zone could give more insights into the observed dynamics or help ex-
plain the size-dependent dynamics for defectors in the zone orientation (Fig. 4).
Future studies could also exploit the idea of using zone-selective probabilistic
defection to improve the efficiency (polarisation speed and energy cost) of col-
lective motion algorithms for robot swarms, or make the swarm’s motion more
robust against adversarial attacks [32,44]. Our long-term plans are to use the
insights from this study to combine collective motion models with evolutionary
games to understand the conditions where certain behavioural traits are likely
to manifest, both at the group and individual levels (e.g., splitting and merging
of collectives [8], leader-follower [42,20,5] behaviour of individuals, and emergent
leadership in groups [40]).
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